1.2. Современные методы исследований в психофизиологии

В психофизиологии основными методами регистрации физиологических процессов являются электрофизиологические методы. Со времени обнаружения Л. Гальвани (конец XVIII в.) «животного электричества» стало известно, что в физиологической активности клеток, тканей и органов особое место занимает электрическая составляющая. Помимо этого, в исследованиях также, как и раньше, используются вегетативные реакции (кожно-гальванический рефлекс, частота сердечных сокращений, артериальное давление и др.).

Электрическая активность кожи (ЭАК) связана с активностью потоотделения. Из центральной нервной системы к потовым железам поступают влияния из коры больших полушарий и из глубинных структур мозга – гипоталамуса и ретикулярной формации. У человека на теле имеется 2–3 млн потовых желез, наибольшее их число на ладонях и подошвах. Их главная функция – поддержание постоянной температуры тела. Однако некоторые потовые железы активны и при сильных эмоциональных переживаниях, стрессе и разных формах активной деятельности. Эти потовые железы сосредоточены на ладонях и подошвах и в меньшей степени на лбу и под мышками. ЭАК используется как показатель такого «нетипичного» потоотделения. Ее обычно регистрируют с кончиков пальцев или с ладони биполярными неполяризующимися электродами.

Существуют два способа исследования электрической активности кожи: метод Фере, в котором используется внешний источник тока, и метод Тарханова, где внешний источник тока не применяется (табл. 1, рис. 1).

Таблица 1

Методы исследования электрической активности кожи

Рис. 1. Принципиальные различия активного (Фере) и пассивного (Тарханов) методов исследования электрической активности кожи

Раньше эти показатели ЭАК называли общим термином «кожно-гальваническая реакция». Сейчас же в случае приложения внешнего тока (метод Фере) показателем считается проводимость кожи, а показателем в методе Тарханова является электрический потенциал самой кожи. Так как выделение пота из потовых желез имеет циклический характер, то и записи ЭАК носят колебательный характер.

Электромиография – это психофизиологический метод исследования, основанный на регистрации электрических импульсов (потенциалов), возникающих в мышечных волокнах той или иной части тела под воздействием различных возбуждающих стимулов и/или в покое (рис. 2).

Рис. 2. Схема проведения метода миографии

Выделяют 2 основных типа электромиографии (ЭМГ):

1. Стимуляционная ЭМГ – метод, заключающийся в стимулировании нервных волокон специальным электрическим импульсом заданной интенсивности и регистрации получаемых мышечных потенциалов с помощью накожных электродов, расположенных на соответствующей мышце. Метод стимуляционной ЭМГ позволяет оценить возбудимость нерва и проведение по нему электрического импульса на различных участках двигательных или чувствительных нервов.

2. Игольчатая ЭМГ— малоинвазивный метод исследования, при котором одноразовый тонкий игольчатый электрод вводится в определенную мышцу с целью регистрации и анализа ее специфических потенциалов в состоянии полного расслабления и произвольного напряжения. Метод игольчатой ЭМГ позволяет оценить состояние мышцы и различных отделов периферической нервной системы.

Измерение локального мозгового кровотока (ЛМК). Этот метод основан на измерении скорости вымывания из тканей мозга изотопов ксенона, криптона или атомов водорода. Увеличение кровотока означает рост обменных процессов в каком-либо месте мозга. Именно в этом месте нейроны и обладают наибольшей активностью. Регистрация производится с помощью гамма-камеры. Изотопы вводят через сонную артерию (для одного полушария) или через дыхательные пути (на оба полушария). Этот метод обладает высоким пространственным разрешением, т. е. приемлем для выявления пространственной мозговой фоновой активности, но имеет низкое временное разрешение, т. е. малопригоден для изучения динамики мозговой активности.

Регистрация импульсной активности нервных клеток. Одним из показателей активности нейронов являются потенциалы действия – электрические импульсы длительностью несколько мс и амплитудой до нескольких мВ (рис. 3).

Рис. 3. А – принципиальная схема регистрации импульсной активности нейрона: 1 – нейрон (увеличен) и кончик отводящего электрода; 2 – микроманипулятор (в разрезе); 3 – микроэлектрод с отводящим проводом; 4 – индифферентный электрод; 5 – усилитель; 6 – монитор и записывающее устройство. Б – пример записи импульсной активности нейрона (нейронограмма)

Современные технические возможности позволяют регистрировать импульсную активность нейронов у животных в свободном поведении и сопоставлять эту активность с различными поведенческими показателями. При операциях мозга регистрируют импульсную активность нейронов у человека. Регистрация производится с помощью специальных металлических или стеклянных отводящих микроэлектродов (Марютина Т. М., Кондаков И. М., 2004).

Электроэнцефалография – неинвазивный метод исследования функционального состояния головного мозга путем регистрации его биоэлектрической активности, изображаемой при помощи электроэнцефалограммы (рис. 4).

В каждый момент времени ЭЭГ отражает суммарную электрическую активность клеток коры мозга. ЭЭГ имеет высокое временное разрешение. Ее показатели меняются при изменении функционального состояния, а также во время некоторых клинических случаев, например при эпилептическом припадке.

ЭЭГ отражает колебания во времени разности потенциалов между двумя электродами. Отводящие электроды располагаются по международной схеме «10–20» (потребность сопоставления электроэнцефалографических результатов, полученных у людей с разными размерами головы в разных лабораториях и в разных странах, привела к созданию единой стандартной системы наложения электродов).

Рис. 4. Проведение ЭЭГ головного мозга

Существуют два способа регистрации ЭЭГ – биполярный и монополярный. При биполярном отведении (в клинике) регистрируется разность потенциалов между двумя активными электродами. В психофизиологических исследованиях общепринятым считается метод монополярного отведения. При монополярном отведении регистрируется разность потенциалов между различными точками на поверхности головы по отношению к какой-то одной индифферентной точке (сосцевидный отросток черепа и др.).

В норме регистрируются следующие типы спонтанных колебаний:

Дельта-ритм – колебания с частотой 0,5–3,5 Гц и амплитудой 250–300 мкВ; наблюдается при глубоком сне и наркозе; зона появления дельта-волн варьирует.

Тета-ритм – колебания частотой 4–8 Гц, амплитудой 100–150 мкВ; регистрируется во время засыпания, поверхностного сна и неглубоком наркозе. Колебания приурочены к фронтальным зонам, но наиболее выражены в гиппокампе.

Альфа-ритм – волны с частотой 8-13 Гц и амплитудой 50 мкВ, регистрируются при закрытых глазах в состоянии бодрствования и полного покоя. Регистрируется в затылочной и теменной областях.

Бета-ритм – волны частотой 14–30 Гц, амплитудой 20–25 мкВ; наблюдается при деятельности мозга и учащается по мере повышения интенсивности умственной работы. Появляется, если пациент открывает глаза (называется блокадой альфа-ритма). Локализован в прецентральной и фронтальной коре.

Гамма-ритм: частота 30-170 (до 500) Гц, амплитуда около 2 мкВ. Наблюдаются в прецентральной, фронтальной, височной, теменной и специфических зонах коры.

На рис. 5 представлены основные ритмы ЭЭГ.

Рис. 5. Основные ритмы ЭЭГ

Магнитоэнцефалография – регистрация магнитных полей неконтактным способом; она позволяет получить так называемую магнитоэнцефалограмму (МЭГ). На рис. 6 представлен современный магнитоэнцефалограф.

Активность мозга сопровождается слабыми электрическими токами, которые создают магнитные поля. МЭГ регистрируют с помощью сверхпроводящего квантового интерференционного устройства – магнитометра. Предполагается, что если ЭЭГ больше связана с радиальными по отношению к поверхности коры головного мозга источниками тока (диполями), что имеет место на поверхности извилин, то МЭГ больше связана с тангенциально направленными источниками тока, которые расположены в корковых областях, образующих борозды. Если исходить из того, что площадь коры головного мозга в бороздах и на поверхности извилин приблизительно одинакова, то несомненно, что значимость МЭГ при изучении активности мозга сопоставима с ЭЭГ. Поскольку электрическое и магнитное поля взаимоперпендикулярны, то при одновременной регистрации этих полей создается взаимодополняющая информация об исходном источнике генерации тех или иных потенциалов. МЭГ позволяет дополнять информацию об активности мозга, получаемую с помощью электроэнцефалографии.

Рис. 6.Современный магнитоэнцефалограф

На рис. 7 представлен один из вариантов результата исследования МЭГ.

Потенциалы, связанные с событиями (ССП) – широкий класс электрофизиологических феноменов, которые выделяют из фоновой ЭЭГ. В характеристиках ССП проявляется связь активности мозга с событиями во внешней среде (ВП), во внешне наблюдаемом поведении испытуемого (моторные потенциалы) и с психологическими характеристиками активности испытуемого (потенциалы готовности). К амплитудно-временным характеристикам волны или компонента относят: полярность (позитивная или негативная);

длительность;

латентный период начала отклонения или его пика по отношению к моменту появления события;

амплитуда от «нулевой линии».

Рис. 7. Результат исследования МЭГ

Вызванные потенциалы (ВП) выделяют из фоновой ЭЭГ после многократного предъявления стимула. На рис. 8 представлены схематизированные эндогенные компоненты ВП.

Рис. 8. Схематизированные эндогенные компоненты ВП

Окулография — регистрация движений глаз. Амплитуда движения глаз определяется в угловых градусах.

К микродвижениям, направленным на сохранение местоположения глаз в орбите, относят тремор (мелкие, частые колебания), дрейф (медленное, плавное перемещение глаз, прерываемое микроскачками) и микро-саккады (быстрые движения).

К макродвижениям, связанным с изменением местоположения глаз в орбите, относят макро-саккады (произвольные быстрые и точные смещения взора с одной точки на другую, например, при рассматривании картины, при быстрых точных движениях руки) и прослеживающие движения глаз (плавные перемещения глаз при отслеживании перемещающегося в поле зрения объекта носят непроизвольный характер).

Электроокулография представляет наиболее распространенный метод регистрации движений глаз, при котором исключается контакт с глазным яблоком. Дипольное свойство глазного яблока, состоящее в том, что его роговица имеет положительный заряд относительно сетчатки, лежит в основе электроокулографии. На рис. 9 изображена процедура проведения окулографии.

Рис. 9. Процедура проведения окулографии

Томографические методы. Позитронно-эмиссионная томография (ПЭТ) основана на выявлении распределения в мозге различных изотопов химических веществ (С-11, 0-15, N-13, F-18), участвующих в метаболизме. Меченое вещество вводят в вену или в легкие, и оно с кровью попадает в мозг. Там оно испускает позитрон, который взаимодействует со свободным электроном. При этом выделяется гамма-излучение (пара протонов), которое фиксируется прибором. Горизонтальный срез мозга позволяют создать множество следов, а построить трехмерное изображение мозга с локальными активными участками – синтез этих срезов. На рис. 10 представлена схема проведения ПЭТ.

Рис. 10. Схема проведения ПЭТ

В настоящее время широкое распространение получает метод магнитно-резонансной томографии (МРТ) (рис. 11).

МРТ головного мозга – метод получения изображений без использования рентгеновских лучей и радиации. Пациента помещают в сильное магнитное поле, что приводит к тому, что все атомы водорода в теле выстраиваются параллельно направлению магнитного поля. В этот момент прибор посылает электромагнитный сигнал перпендикулярно основному магнитному полю. Атомы водорода, имеющие одинаковую с сигналом частоту, «возбуждаются» и генерируют свой сигнал, который улавливается томографом.

Рис. 11. Магнитно-резонансный томограф

МРТ проводится в различных плоскостях, что позволяет получать не только аксиальные, но и фронтальные, сагиттальные и даже косые срезы. МРТ совершенно безвредна, так как исследование не связано с облучением.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК

Данный текст является ознакомительным фрагментом.