…и считать с томограммы

We use cookies. Read the Privacy and Cookie Policy

…и считать с томограммы

Чтение мыслей всегда считалось чудом, и кто из нас не мечтал об этой способности, обещающей сверхмогущество! Нейробиологи в очередной раз доказали способность науки творить чудеса, наглядно продемонстрировав принципиальную возможность чтения мыслей. Эта возможность уже показана несколькими научными коллективами в разных экспериментах.

Команда английских ученых под руководством Элеонор Магьюр из Института неврологии Университетского колледжа в Лондоне готовила свой эксперимент по чтению мыслей долго и поэтапно. Эксперимент осуществлялся по следующей схеме. Десяти испытуемым показывали три коротких видеосюжета по семь секунд. В видеосюжетах актриса выполняла некие простые действия — опускала письмо в почтовый ящик, выбрасывала в урну жестянку из-под кока-колы и т. д. Участники смотрели клипы по десять раз, затем вспоминали один из сюжетов — либо по своему выбору, либо по указанию экспериментаторов. Во всех случаях снимались показания томографа, сканирующего область гиппокампа и прилегающих структур. После этого оставалось обобщить данные сканирования мозга при воспоминаниях каждого из трех клипов и понять, можно ли по этим результатам определить, какой из трех клипов выбирал испытуемый. Поскольку результат эксперимента статистический, каждый участник должен был вспоминать каждый из клипов семь раз по требованию и десять раз в свободном режиме (Chadwick et al., 2010).

Выполнение этого эксперимента помимо аккуратного подбора участников и психологически продуманного дизайна (сколько секунд длится представление задания, в какой момент испытуемый закрывает и открывает глаза и т. д.) требовало решения более сложных технических задач. Во-первых, какую часть мозга сканировать? Во-вторых, как осуществлять обсчет полученных объемных изображений? Современная аппаратура не достигает той разрешающей способности, которая позволила бы отследить работу каждого отдельного нейрона даже в ограниченной области мозга (этого можно добиться, только вставляя в нейроны электроды, но такие опыты на людях не проводят). Какой масштаб осреднения допустим для цифровой обработки томограмм?

Все эти задачи группа Элеонор Магьюр решала, судя по публикациям, не меньше четырех-пяти лет. За это время ученым удалось доказать локализацию пространственной памяти в области гиппокампа. В частности, они провели замечательное исследование с участием настоящих экспертов в области пространственного ориентирования — лицензированных лондонских таксистов (Woollett et al., 2009). Эта профессия требует запоминания взаиморасположения не менее 20 000 улиц Лондона. Выяснилось, что у лондонских таксистов увеличены объем и масса серого вещества в задней части гиппокампа.

Множество подобных "наработок", а на самом деле — замечательных самоценных исследований вошли составными частями в эксперимент по угадыванию мыслей. Усредненные томограммы для каждого из трех видеоклипов позволили авторам научиться определять, какое из воспоминаний выбрал тот или иной участник. Точность определения составила 45 %, а это существенно выше, чем 33 %, которые бы получились при случайном попадании.

Аналогичным образом другие исследователи недавно научились определять по томограмме, какое существительное (из 60 возможных) задумал испытуемый. Десяти участникам эксперимента читали вслух 60 существительных, снимая синхронные томограммы. Из индивидуальных томограмм удалось выделить общие компоненты, которые соответствовали каждому из слов. Когда картотека была составлена, участники эксперимента загадывали слово из списка, а ученые, как и в других подобных исследованиях, пытались его определить. Ученым удалось правильно определить задуманные слова в 72 % случаев.

Столь высокая точность была достигнута не за счет большего разрешения томограмм, как можно было бы предположить. По ходу экспериментов ученые разгадали принцип "записи" слов в мозге. Оказалось, что в коре имеются участки, в которых представляются глобальные смысловые ассоциации. Таких ассоциативных групп было найдено три. Первая группа отражает связь с домом или укрытием: крыша, тепло, строение и так далее. Вторая группа связана с едой: яблоко, зуб, ложка. Третья — это предметы, которыми можно манипулировать, совершать какие-то действия: молоток, отвертка, автомобиль. Каждая из трех смысловых групп представлена в мозге набором из нескольких участков, которые возбуждаются, когда человек думает о данном круге понятий. Эти наборы участков — своего рода камеры хранения смыслового багажа, который несет каждое слово, и таких камер хранения три. Мысль об "укрытии" соответствует возбуждению нескольких участков теменных и височных долей, за "еду" отвечают лобные доли, за "манипуляции" — в основном теменные (включая, что любопытно, и те участки надкраевой извилины, которые контролируют реальные манипуляции с объектами, такие как изготовление каменных орудий; см. ниже в этой главе). Кроме того, по реакции некоторых участков затылочных долей можно определить длину слова.

Возбуждение нейронов в центрах только одного представительства указывает, что слово относится только к одной смысловой группе, то есть весь смысловой багаж размещен в одной камере хранения. Например, "дом" — это укрытие, но не еда и не орудие. Если слово ассоциируется сразу с двумя смысловыми группами (как, например, ложка — орудие, связанное с едой, или автомобиль — отчасти орудие, но при этом и укрытие), то возбуждаются нейроны сразу в двух представительствах, смысловая нагрузка расположена в двух камерах хранения. Таким образом, соотношение возбуждений в каждом из трех представительств — количество багажа в каждой из трех камер хранения — формирует конкретное понятие. Остается для каждого слова определить количество багажа в трех камерах хранения, и смысл слова становится ясен. Разгадав этот принцип, экспериментаторы научились не только определять, какое слово задумал человек, но и предсказывать, какие участки коры возбудятся при мысли о новом, еще не испытанном слове (Just et al., 2009).

Еще легче, чем слова, "считываются" с томограммы мозга зрительные образы, например, геометрические фигуры. Не исключено, что в совсем уже недалеком будущем можно будет просматривать сны на экране компьютера. Ложитесь спать в шлеме, а утром достаете из дисковода DVD-диск со всеми увиденными за ночь сновидениями. Представляете, как удобно: вместо того чтобы пересказывать сон своими словами (согласитесь, многие сны в пересказе как-то блекнут), можно будет просто выложить его в YouTube (подробнее об исследованиях, связанных с чтением мыслей, рассказано в статье Елены Наймарк "Увидеть мысль", http://www.nm1925.ru/Archive/Journal6_2010_11/Content/Publication6_205/Default.aspx).

Данный текст является ознакомительным фрагментом.