Рассказ Обезьяны-Ревуна
Рассказ Обезьяны-Ревуна
Новые гены не добавляются к геному из ничего. Они возникают как дубликаты старых генов. Затем в течение эволюционного времени они идут своими собственными путями, благодаря мутации, отбору и дрейфу. Мы обычно не видим этого, но, как детективы, появляющиеся на сцене после преступления, мы можем, сложив части вместе, выяснить, что могло случиться, используя оставленные улики. Гены, вовлеченные в цветовое зрение, представляют поразительный пример. По причинам, которые вскоре станут понятны, обезьяна-ревун имеет все возможности рассказать эту историю.
В течение мегалет своего формирования млекопитающие были ночными существами. День принадлежал динозаврам, у которых, вероятно, если ориентироваться на их современных родственников, было превосходное цветовое зрение. Такое же, как мы можем обоснованно предположить, было и у отдаленных предков млекопитающих, млекопитающеподобных рептилий, наполнявших дни до расцвета динозавров. Но во время длинного ночного изгнания млекопитающих их глаза должны были улавливать любые фотоны, которые были доступны, независимо от цвета. Не удивительно, что по причинам, которые мы исследуем в «Рассказе Слепой Пещерной Рыбы», способность различать цвета ухудшилась. По сей день у большинства млекопитающих, даже у тех, кто вернулся к дневному образу жизни, довольно плохое цветовое зрение, со всего двухцветной системой («дихроматическое»). Это объясняется количеством различного типа чувствительных к цвету клеток – «колбочек» – в сетчатке. Мы, узконосые обезьяны и обезьяны Старого света, имеем три типа: красные, зеленые и синие, и поэтому наше зрение трихроматическое, но факты свидетельствуют, что мы вернули третий тип колбочек после того, как наши ночные предки потеряли его. Большинство других позвоночных животных, таких как рыбы и рептилии, но не млекопитающие, имеют зрение с тремя типами колбочек (трихроматическое) или с четырьмя (тетрахроматическое), а птицы и черепахи могут быть еще более искушенными. Мы рассмотрим особый случай с обезьянами Нового света и даже еще более особый случай с обезьянами-ревунами через мгновение.
Есть любопытные данные, что австралийские сумчатые отличаются от большинства млекопитающих наличием хорошего трихроматического цветового зрения. Кэтрин Арресе (Catherine Arrese) и ее коллеги, которые обнаружили его у медовых опоссумов и сумчатых тушканчиков (оно было также продемонстрировано у кенгуру-валлаби), предполагают, что австралийские (но не американские) сумчатые сохранили наследственный зрительный пигмент рептилий, который потеряли остальные млекопитающие. Но у млекопитающих вообще, вероятно, самое плохое цветовое зрение среди позвоночных животных. Большинство млекопитающих видит цвета, если вообще видит, лишь так же, как дальтоники. Характерные исключения были обнаружены среди приматов, и не случайно, что они больше, чем любая другая группа млекопитающих, использовали яркие цвета в половых демонстрациях.
В отличие от австралийских сумчатых, которые, возможно, никогда не теряли его, мы можем сказать, глядя на наших родственников среди млекопитающих, что мы, приматы, не сохранили трихроматическое зрение наших рептильных предков, но открыли его вновь – не однажды, но дважды независимо: сначала у обезьян Старого света и человекообразных обезьян, и второй раз в Новом свете у обезьяны-ревуна, хотя и не у обезьян Нового света вообще. Цветовое зрение обезьяны-ревуна похоже на зрение человекообразных обезьян, но достаточно отличается, чтобы приписывать ему независимое происхождение.
Почему хорошее цветовое зрение было настолько важно, что трихроматизм развился независимо в Новом свете и у обезьян Старого света? Основное предположение – что это имеет отношение к питанию фруктами. В преимущественно зеленом лесу фрукты выделяются своими цветами. Это, в свою очередь, вероятно, не является случайностью. Фрукты, возможно, развили яркие цвета, чтобы привлечь плодоядных животных, таких как обезьяны, кто играет жизненно важную роль в распространении и удобрении их семян. Трихроматическое зрение также помогает в обнаружении молодых, более сочных листьев (часто светло-зеленого цвета, иногда даже красного), на фоне более темных зеленых цветов – но это, по-видимому, не выгодно растениям.
Цвет поражает наше сознание. Слова, обозначающие цвет – среди первых прилагательных, которые изучают младенцы, и которые они наиболее нетерпеливо связывают с любым употребляемым существительным. Трудно представить, что оттенки, которые мы воспринимаем, являются обозначениями электромагнитных излучений, лишь немного отличающихся длиной волны. У красного света длина волны – приблизительно 700-миллиардная доля метра, у фиолетового – приблизительно 420-миллиардная доля метра, но вся гамма видимого электромагнитного излучения, которая находится в этих пределах, является лишь смехотворно узким окном, крошечной частью полного спектра, длины волн которого колеблются от километров (некоторые радиоволны) до долей нанометра (гамма-лучи).
Все глаза на нашей планете настроены таким образом, чтобы использовать длины волн электромагнитного излучения, в котором наша местная звезда сияет наиболее ярко, и которые проходят сквозь окно нашей атмосферы. На глаз как биохимическое оборудование, соответствующее этому конечному диапазону длин волн, законы физики налагают определенные ограничения к области электромагнитного спектра, который может быть виден при использовании этого средства. Ни одно животное не может видеть далеко в инфракрасной части спектра. Лучше других это делает ямкоголовая гадюка, имеющая на голове ямки, которые как никакие другие органы чувств сосредотачивают инфракрасные лучи в точное изображение, позволяя этим змеям достигать некоторой направленной чувствительности к высокой температуре, производимой их добычей. И ни одно животное не может видеть далеко в ультрафиолетовой области, хотя некоторые из них, пчелы например, могут видеть немного дальше, чем мы. Но с другой стороны, пчелы не могут видеть наш красный: для них он инфракрасный. Все животные сходятся на том, что «свет» является узким диапазоном длин электромагнитных волн, лежащим где-то между ультрафиолетовым в коротковолновом конце и инфракрасным в длинноволновом. Пчелы, люди и змеи отличаются только слегка в том, где они проводят границы в каждом конце «света».
Еще более узкое поле зрения получает каждая из различного рода светочувствительных клеток в сетчатке. Некоторые колбочки немного более чувствительны к красной области спектра, другие – к синей. В этом состоит отличие между колбочками, которое делает возможным цветовое зрение, и качество цветового зрения зависит в значительной степени от того, сколько различных классов колбочек сравниваются. Дихроматичные животные имеют лишь два класса колбочек, вперемежку друг с другом. Трихроматичные имеют три, тетрахроматичные – четыре. У каждой колбочки есть кривая чувствительности, которая достигает максимума где-нибудь в середине спектра и угасает не очень симметрично с обеих сторон от пика. За пределами своей кривой чувствительности клетка, как говорят, является слепой.
Предположим, пики чувствительности колбочки лежат в зеленой части спектра. Означает ли это, что клетка посылает импульсы в мозг, когда тот смотрит на зеленый объект, как трава или бильярдный стол? Решительно нет. Это означает, что клетка нуждается в большем количестве, (скажем), красного света, чтобы достигнуть того же уровня возбуждения, как при данном количестве зеленого света. Такая клетка вела бы себя одинаково при ярком красном свете или более тусклом зеленом свете (Сравнивается чувствительность трех типов колбочек к различным длинам волн. Хотя колбочки называются синими, зелеными и красными, их пиковые чувствительности лежат в фиолетовой, зеленой и оранжевом конце желтой области. Ответные реакции трех видов колбочек объединяются мозгом, чтобы создать разнообразие оттенков, которые мы видим.). Нервная система может различить цвет объекта, только сравнивая одновременно уровни возбуждения (по крайней мере) двух клеток, предпочитающих различные цвета. Каждая служит «контролем» для другой. Вы можете получить еще лучшее представление о цвете объекта, сравнивая уровень возбуждения трех клеток с различными кривыми чувствительности.
Цветные телевизоры и компьютерные экраны из-за того, что они разработаны для наших трихроматичных глаз, также используют трехцветную систему. На нормальном компьютерном мониторе каждый «пиксел» состоит из трех точек, помещенных слишком близко друг к другу, чтобы глаз мог это заметить. Каждая точка всегда горит одним и тем же цветом: если Вы посмотрите на экран при достаточном увеличении, Вы всегда увидите одни и те же три цвета, обычно красный, зеленый и синий, хотя и при других комбинациях можно достичь того же эффекта. Телесный тон, едва различимая тень – любой оттенок, который Вы пожелаете – можно достичь, варьируя интенсивностью, с которой горят эти три основных цвета (Это дает интригующую возможность. Представьте себе, что нейробиолог вставляет крошечный зонд, скажем, в зеленую колбочку и электрически ее стимулирует. Зеленая клетка теперь докладывает: «свет», в то время как все другие клетки молчат. Будет ли мозг «видеть» «супер зеленый» оттенок, который не может быть достигнут никаким реальным светом? Реальный свет, независимо от того, насколько чистый, всегда стимулировал бы все три класса колбочек в различной степени. Хотя тетра-хроматические черепахи, например, могли бы быть больше всех разочарованы нереалистичными (для них) картинами на нашем телевидении и киноэкранах.).
Точно так же, сравнивая уровни возбуждения только трех видов колбочек, наш мозг может воспринимать огромный диапазон оттенков. Но большинство плацентарных млекопитающих, как уже сказано, является не трихроматами, а дихроматами, лишь с двумя классами колбочек в их сетчатках. Один класс достигает максимума в фиолетовой области (или, в некоторых случаях, ультрафиолетовой), пики других классов лежат где-то между зеленым и красным. У нас, трихроматов, колбочки с короткой длиной волны достигают максимума между фиолетовой и синей областями, и их обычно называют синими колбочками. Другие два класса наших колбочек можно назвать зелеными и красными колбочками. Это сбивает с толку, но даже «красные» колбочки достигают максимума при длине волны, которая является фактически желтоватой. Но их кривая чувствительности в целом простирается в красный конец спектра. Даже если кривая достигает максимума в желтой области, они все еще сильно возбуждаются в ответ на красный свет. Это означает, что, если Вы вычитаете уровень возбуждения «зеленой» колбочки из уровня «красной», Вы получите особенно сильный эффект, глядя на красный свет. С этого момента я забуду о пиковой чувствительности (фиолетовой, зеленой и желтой) и обращусь к трем классам колбочек – синим, зеленым и красным. В дополнение к колбочкам есть также палочки: светочувствительные клетки отличной от колбочек формы, которые особенно полезны ночью, и которые не используются в цветовом зрении вообще. Они не будут играть роли в дальнейшей нашей истории.
Химия и генетика цветового зрения довольно хорошо изучены. Главные молекулярные актеры в истории – опсины: белковые молекулы, которые служат оптическими пигментами, находящимися в колбочках (и палочках). Каждая молекула опсина работает, будучи упакованной и присоединенной к единственной молекуле ретинола: химическому соединению, полученному из витамина A (Морковь богата бета-каротином, из которого может быть образован витамин А: отсюда и слух — слухи могут быть правдивыми — что морковь улучшает зрение.). Молекула ретинола была предварительно сильно изогнута, чтобы соответствовать молекуле опсина. При попадании единственного фотона соответствующего цвета петля распрямляется. Это – сигнал для клетки, чтобы запустить нервный импульс, который говорит мозгу: «свет моего типа здесь». Затем молекула опсина перезаряжается другой изогнутой молекулой ретинола из магазина в клетке.
Теперь – важный момент: не все молекулы опсина одинаковы. Опсины, как и все белки, создаются под влиянием генов. Различия в ДНК способствуют производству опсинов, которые чувствительны к различным цветам, и это является генетической основой двухцветных или трехцветных систем, о которых мы говорили. Конечно, поскольку все гены присутствуют во всех клетках, различие между красной и синей колбочкой не в том, какими генами они обладают, а в том, какие гены они запускают. И есть своего рода правило, которое говорит, что любая колбочка запускает ген только одной категории.
Гены, которые создают наши зеленые и красные опсины, очень похожи друг на друга; они находятся на X хромосомах (половых хромосомах, которые у женщин имеются в двух копиях, а у мужчин - только в одной). Ген, который делает синий опсин, немного отличается, и лежит не на половой хромосоме, а на одной из обычных, неполовых хромосом, названных аутосомами (в нашем случае это хромосома 7). Наши зеленые и красные клетки были, очевидно, получены в результате недавнего случая дупликации гена, а намного раньше они, должно быть, отделились от гена синего опсина в другом случае дупликации. Обладает ли человек дихроматичным или трихроматичным зрением зависит от того, сколько генов различных опсинов он имеет в своем геноме. Если у него будут, скажем, опсины, чувствительные к синему и зеленому свету, но не красному, то он будет дихроматом.
Это объясняет, как цветовое зрение работает вообще. Теперь, прежде чем мы непосредственно рассмотрим особый случай обезьяны-ревуна, и как он стал трихроматом, мы должны понять странную двуцветовую систему остальных обезьян Нового света (между прочим, она имеется также у некоторых лемуров, но не у всех обезьян Нового света – например, ночные обезьяны обладают монохроматическим зрением). В целях данного обсуждения мы временно исключим обезьяну-ревуна и другие необычные виды из «обезьян Нового света». Мы дойдем до обезьяны-ревуна позже.
Во-первых, оставим в стороне синий ген как постоянно закрепленный на аутосоме, присутствующей у всех особей, самцов или самок. Красные и зеленые гены на X хромосомах более сложны и привлекут наше внимание. В каждой X хромосоме есть только один локус, где мог бы находиться красный или зеленый аллель (Фактически красный и зеленый — только два из ряда возможных в этом локусе, но мы имеем достаточно много сложностей для начала. В целях этого рассказа они будут твердо «красным» и «зеленым».). Так как самка имеет две X хромосомы, у нее есть две возможности обладать красным или зеленым геном. Но у самца со всего одной X хромосомой имеется или красный, или зеленый ген, но не оба. Таким образом, типичный самец обезьяны Нового света должен быть дихроматичным. У него имеются только два вида конусов: синий плюс либо красный, либо зеленый. По нашим стандартам все самцы дальтоники, но они дальтоники двух различных типов; некоторые самцы в популяции не имеют зеленого опсина, у других нет красного. Все они имеют синий.
Самкам потенциально повезло больше. Имея две X хромосомы, они могли бы быть достаточно удачливыми, чтобы обладать красным геном на одной из них, а зеленым - на другой (плюс синий цвет, который снова сам собой разумеется). Такая самка была бы трихроматом (Что касается того, чтобы обеспечить в любой колбочке включение только красного или зеленого гена опсина, но не обоих, это оказалось нетрудным для самок. У них уже есть механизм, чтобы отключить всю систему X-хромосомы в любой клетке. Случайно выбранная половина клеток дезактивирует одну из двух X-хромосом, другая половина — другую. Это важно, потому что все гены в X-хромосоме настроены, чтобы работать, если активна всего одна – что необходимо, потому что у самцов есть только одна X-хромосома.). Но невезучая самка может иметь два красных или два зеленых гена, и поэтому будет дихроматом. По нашим стандартам такие самки дальтоники, и двух типов, точно так же как самцы.
Популяции обезьян Нового света, таких как игрунки или беличьи обезьяны, поэтому являются странной сложной смесью. Все самцы и некоторые самки являются дихроматами: дальтониками по нашим стандартам, но двух альтернативных типов. Некоторые самки, но не самцы, являются трихроматами с настоящим цветовым зрением, которое, по-видимому, похоже на наше. Экспериментальные данные с игрунками, ищущими пищу в закамуфлированных коробках, показали, что трихроматичные особи были более успешны, чем дихроматы. Возможно, добывающие пропитание группы обезьян Нового света полагаются на своих удачливых трихроматичных самок, чтобы найти пищу, которую иначе пропустило бы большинство из них. С другой стороны, есть возможность, что у дихромата, одного или в сговоре с дихроматом другого типа, могли бы быть странные преимущества. Есть анекдоты про экипаж бомбардировщика во Второй Мировой войне, нарочно принимавший в свой состав одного дальтоника, потому что он мог выявить определенные типы камуфляжа лучше, чем его более удачливые трихроматичные товарищи. Экспериментальные данные подтверждают, что человек-дихромат может действительно распознать определенные формы камуфляжа, которые обманывают трихромата. Действительно ли возможно, что отряд обезьян, состоящий из трихроматов и двух видов дихроматов, мог бы совместно найти больше разнообразных фруктов, чем отряд чисто трихроматов? Это могло бы показаться неправдоподобным, но это не глупо.
Гены красного и зеленого опсина у обезьян Нового света являются примером «полиморфизма». Полиморфизм – одновременное существование в популяции двух или больше альтернативных версий гена, где ни один из них не является достаточно редким, чтобы быть просто недавним мутантом. Существует известный принцип эволюционной генетики, что полиморфизмы, подобные этому, не возникают без серьезного основания. Если не случится ничего особенного, обезьяны с красным геном будут или более удачливы, или окажутся в более затруднительном положении, чем обезьяны с зеленым геном. Мы не знаем, какой именно, но очень маловероятно, что они оба были бы строго одинаково хороши. И худшая разновидность должна исчезнуть.
Устойчивый полиморфизм в популяции указывает на нечто особое. На что именно? Два основных предположения были сделаны для полиморфизмов вообще, и любое из них могло бы быть применимо в данном случае: частотно-зависимый отбор и преимущество гетерозигот. Частотно-зависимый отбор имеет место, когда более редкий тип имеет преимущество просто на основании того, что он более редок. Итак, поскольку тип, о котором мы думали как о «худшем», начинает исчезать, он перестает быть худшим и приходит в норму. Как такое может быть? Что ж, предположим, что «красные» обезьяны способны особенно хорошо видеть красные фрукты, в то время как «зеленые» обезьяны – зеленые фрукты. В популяции, где преобладают красные обезьяны, будет уже сорвано большинство красных фруктов, и единственная зеленая обезьяна, способная видеть зеленые фрукты, могла бы обладать преимуществом – и наоборот. Даже если это не особенно правдоподобно, это является примером особых условий, которые могут сохранить оба типа в популяции без вымирания одного из них. Легко заметить, что некоторые параллели нашей «теории» экипажа бомбардировщика могли бы быть разновидностью особых условий, которые поддерживают полиморфизм.
Возвращаясь теперь к преимуществу гетерозигот, классическим примером – почти клише – является серповидно-клетчатая анемия у людей. Ген серповидно-клетчатости плох тем, что люди с двумя его копиями (гомозиготы) имеют поврежденные кровяные тельца, похожие на серпы, и страдают от тяжелой формы анемии. Но этот ген хорош тем, что люди только с одной его копией (гетерозиготы) защищены от малярии. В областях, где малярия является проблемой, польза перевешивает вред, и ген серповидно-клетчатости имеет тенденцию распространяться в популяции, несмотря на отрицательное воздействие на людей, достаточно неудачливых, чтобы быть гомозиготными (Это, к сожалению, затрагивает многих афро-американцев, которые больше не живут в малярийной стране, но наследуют гены предков, которые там жили. Другой пример — изнурительная болезнь кистозный фиброз, ген которого в гетерозиготном состоянии, похоже, предоставляет защиту от холеры.). Профессор Джон Моллон (John Mollon) и его коллеги, исследования которых важны главным образом для раскрытия полиморфной системы цветового зрения у обезьян Нового света, предполагают, что преимущества гетерозигот, которым обладают трихроматичные самки, было достаточно, чтобы одобрить сосуществование красных и зеленых генов в популяции. Но обезьяна-ревун сделала свою систему цветового зрения лучше, и это переносит нас к самому рассказчику.
Обезьянам-ревунам удалось воспользоваться достоинствами обеих сторон полиморфизма, комбинируя их в одной хромосоме. Они сделали это с помощью удачной транслокации. Транслокация – особый вид мутации. Часть хромосомы по ошибке произвольно приклеивается к другой хромосоме или к другим местам на той же самой хромосоме. Это, похоже, случилось с удачливым мутантным предком обезьяны-ревуна, который в результате оказался с красным и зеленым генами рядом друг с другом на одной X хромосоме. Эта обезьяна была одобрена на своем эволюционном пути к становлению истинным трихроматом, даже если это был самец. Мутантная X-хромасома распространилась в популяции, и теперь ею обладают все обезьяны-ревуны.
Для обезьяны-ревуна было легко выполнить этот эволюционный трюк, потому что три гена опсина уже присутствовали в популяции обезьян Нового света: просто, за исключением некоторых удачливых самок, у любой обезьяны было только два из них. Когда мы, человекообразные обезьяны и обезьяны Старого света независимо сделали то же самое, мы действовали иначе. Дихроматы, от которых мы произошли, были дихроматами только одной разновидности: не было полиморфизма, чтобы от него отталкиваться. Факты свидетельствуют, что удвоение гена опсина на X хромосомах в нашей родословной было настоящей дупликацией. Подлинный мутант оказался с двумя тандемными копиями идентичного гена, считается, с двумя зелеными рядом на хромосоме, и он, поэтому, не стал почти мгновенно трихроматом, как мутантный предок обезьяны-ревуна. Это был дихромат с одним синим геном и двумя зелеными. Обезьяны Старого света становились трихроматами постепенно в последующей эволюции, по мере того, как естественный отбор одобрил расхождение цветовой чувствительности двух генов опсинов к зеленому и красному соответственно.
Когда случается транслокация, то перемещается не только интересующий нас ген. Иногда его путешествующие компаньоны – его соседи по первоначальной хромосоме, которые переселяются с ним в новую хромосому – могут нам кое-что рассказать. Так было и в этом случае. Ген, называемый Alu, известен как «транспозируемый элемент»: короткая, подобная вирусу часть ДНК, которая копирует себя в геноме как своего рода паразит, нарушающий механизм репликации клеточной ДНК. Действительно ли Alu был ответственен за перемещение опсина? Похоже, что так. Мы находим «дымящийся пистолет» – явную улику, когда разглядываем детали. Гены Alu расположены на обоих концах дуплицированой области. Вероятно, дупликация была случайным побочным продуктом паразитного воспроизводства. У некой давно забытой обезьяны эоценовой эпохи геномный паразит, близкий к гену опсина, пытаясь воспроизвести себя, случайно скопировал намного больший кусок ДНК, чем предполагалось, и направил нас на путь к трехцветному зрению. Остерегайтесь, впрочем, искушения – слишком распространенного – считать, что, поскольку геномный паразит, кажется, непредусмотрительно сделал для нас полезное, поэтому геномы предоставляют убежище паразитам в надежде на будущую помощь. Естественный отбор так не работает.
Совершенные Alu или нет, ошибки подобного рода все еще иногда случаются. Когда две X -хромосомы выстраиваются друг напротив друга перед кроссинговером, у них есть вероятность выровняться неправильно. Вместо того чтобы выровнять красный ген на одной хромосоме с таким же красным на другой, схожесть генов может привести к путанице в процессе выравнивания, при этом красный ген может быть выровнен с зеленым. Если тогда происходит кроссинговер, он является «неравноценным»: в конечном итоге на одной хромосоме может оказаться, скажем, дополнительный зеленый ген, в то время как другая X-хромосома не получит зеленого гена вообще. Даже если кроссинговер не происходит, может иметь место процесс, названный «генная конверсия», когда короткая последовательность одной хромосомы преобразуется в соответствующую последовательность другой. В невыровненных хромосомах часть красного гена может быть заменена аналогичной частью зеленого или наоборот. И неравноценный кроссинговер, и невыровненная генная конверсия могут привести к красно-зеленому дальтонизму.
Мужчины чаще страдают от красно-зеленого дальтонизма, чем женщины (страдание не является большим, но все же доставляет неприятность, и они, по-видимому, лишены эстетических переживаний, которые доступны для всех нас), потому что, если они наследуют одну дефектную X-хромосому, у них нет другой, служащей резервной копией. Никто не знает, видят ли они кровь и траву так же, как другие видят кровь, или так же, как другие видят траву, или они их видят иным, совершенно различным образом. Безусловно, это может варьировать от человека к человеку. Мы лишь знаем, что люди, которые являются красно-зелеными дальтониками, думают, что подобные траве вещи имеют цвет в значительной степени похожий на кровь. У людей двуцветный дальтонизм поражает приблизительно два процента мужчин. Не смущайтесь, кстати, фактом, что другие виды красно-зеленого дальтонизма распространены сильнее (затрагивают приблизительно восемь процентов мужчин). Этих людей называют аномальными трихроматами: генетически они - трихроматы, но один из трех видов опсинов у них не работает (Марк Ридли в «Демоне Менделя» (получившем в Америке второе название «Кооперированный ген»), указывает, что восемь процентов (или больше) относятся к европейцам и другим с хорошей историей медицины. Охотники-собиратели и другие «традиционные» общества, находящиеся ближе к переднему краю естественного отбора, показывают более низкий процент. Ридли предполагает, что ослабление естественного отбора позволило дальтонизму возрасти. Все аспекты дальтонизма рассматривает характерно оригинальным способом Оливер Сакс (Oliver Sacks) в «Острове дальтоников».).
Неравноценный кроссинговер не всегда делает вещи хуже. Некоторые X-хромосомы оказываются более чем с двумя генами опсина. Добавочные, кажется, почти всегда являются зелеными, а не красными. Рекордное число достигает двенадцати добавочных зеленых генов, выстраиваемых последовательно. Нет никаких данных, что люди с добавочными зелеными генами могут видеть немного лучше, но не все «зеленые» гены полностью аналогичны друг другу – таким образом, для человека теоретически возможно иметь не трихроматическое, а тетрахроматическое или пентахроматическое зрение. Я не знаю, проверял ли кто-либо это.
Возможно, Вам пришла беспокойная мысль. Я говорил так, как если бы приобретение с помощью мутациии нового опсина автоматически даровало бы усовершенствованное цветовое зрение. Но конечно, различия между цветовой чувствительностью колбочек невозможно использовать, если у мозга нет какого-нибудь способа узнать, какой вид колбочек посылает ему сообщение. Если бы это было достигнуто с помощью жесткой генетической коммутации – эта мозговая клетка присоединена к красной колбочке, та нервная клетка присоединена к зеленой колбочке – система работала бы, но она не могла бы справиться с мутациями в сетчатке. Как же она действует? Как мозговые клетки могут «узнать», что новый опсин, чувствительный к необычному цвету, внезапно стал доступен, и что особый набор колбочек в огромной популяции колбочек в сетчатке включил ген для того, чтобы создать новый опсин?
Кажется, единственный вероятный ответ – что мозг учится. По-видимому, он сравнивает уровни возбуждения, которые возникают в популяции колбочек в сетчатке и «замечает», что одна субпопуляция клеток возбуждается сильнее, когда он смотрит на помидоры и землянику; другая субпопуляция – когда глядит на небо; иная – на траву. Это – «игрушечное» предположение, но я считаю, что нечто подобное позволяет нервной системе оперативно приспособить генетическое изменение в сетчатке. Мой коллега Колин Блэкмор (Colin Blakemore), с которым я поднял этот вопрос, видит эту проблему как одну из семейства подобных проблем, которые возникают всякий раз, когда центральная нервная система должна приспособиться к изменению в периферии (Я ожидаю, что примерно такое же обучение должно использоваться птицами и рептилиями, увеличивающими свой диапазон цветовой чувствительности благодаря внедрению крошечных цветных капелек жира на поверхности сетчатки.).
Заключительный урок «Рассказа Обезьяны-Ревуна» – важность генной дупликации. Гены красного и зеленого опсина, несомненно, получены из одного предкового гена, который создал свою ксерокопию в другой части X-хромосомы. Дальше в прошлом, мы можем быть уверены, произошла похожая дупликация, которая отделила синий аутосомный ген (Или ультрафиолетовый, или другой, который был в те дни. По-видимому, точная цветовая чувствительность всех этих классов опсинов была так или иначе изменена за время эволюции.) от того, который должен был стать красным/зеленым геном X-хромосомы. Для генов на абсолютно разных хромосомах характерно принадлежать к одной и той же «генной семье». Генные семьи возникли при давних дупликациях ДНК, сопровождаемых разделением функций. Различные исследования выявили, что у типичного гена человека средняя вероятность дупликации приблизительно от 0.1 до 1 процента за миллион лет. Дупликация ДНК может быть постепенным событием или может быть взрывной, например, когда недавно опасный паразит ДНК, вроде Alu, распространяется повсюду в геноме, или когда геном дуплицируется целиком. (Дупликация всего генома распространена у растений, и, как предполагается, это случалось, по крайней мере, дважды в нашей родословной при возникновении позвоночных животных). Независимо от того, когда или как это случилось, случайная дупликация ДНК – один из главных источников новых генов. За эволюционное время не только гены изменяются внутри геномов. Изменяются сами геномы.
Данный текст является ознакомительным фрагментом.