6. Случайный инструментарий

We use cookies. Read the Privacy and Cookie Policy

6. Случайный инструментарий

Изменение и ограничения в эволюции животных

Из всех различий между нами и нашими амебоподобными предками, жившими миллиард лет назад, самое главное состоит в том, что у нас есть тело. Мы состоим не из одной, а из триллионов клеток. И этот громадный коллектив — не просто скопище идентичных копий, а целый зоопарк, где живут десятки различных типов клеток, объединенные в сотни органов — от селезенки и костей скелета до мозга и ресниц. И самое замечательное то, что любое из человеческих тел строится на основе одной-единственной первоначальной клетки. По мере того как клетка начинает делиться и превращается в зародыш, гены начинают производить белки, которые затем контролируют развитие этого зародыша. Некоторые из белков включают другие гены или, наоборот, блокируют их. Некоторые покидают клетку, где образовались, и распространяются дальше, передавая соседним клеткам какие-то сигналы; получив сигнал, клетка может взять на себя новую функцию или перебраться в другой конец зародыша, чтобы устроить там себе новый дом. Одни начинают бешено делиться, другие совершают самоубийство. К концу этого танца оказывается, что тело уже сформировано.

На Земле существуют миллионы самых разных тел; это и кальмары с их щупальцами, и дикобразы с их полыми иглами, и безротые ленточные черви. Это настоящие чудеса природы; их происхождение — великая загадка. Все животные происходят от общего одноклеточного предка, но ученые пока не могут сказать, почему из этого единственного предка получилось такое множество таких разных существ. Вероятно, ответ лежит как внутри самих животных, так и снаружи — в их генетической истории и одновременно в истории экосистем, в которых они жили.

Ученые лишь недавно начали выяснять, каким образом гены строят тело животного, но результаты уже впечатляют. Большинство животных, включая и нас, используют стандартный набор «инструментов» — строительных генов. В нем имеются инструменты для обозначения координат — перед и зад, правый и левый бок, голова и хвост. Есть и комплекты генов, контролирующие развитие целых органов, таких как глаза или конечности. Вообще, этот инструментарий почти не меняется от вида к виду — ген, отвечающий за рост глаз у мыши, может быть передан мухе и строить вместо этого ее глаза.

Судя по палеонтологической летописи, этот инструментарий сформировался постепенно за миллионы лет, предшествовавшие кембрийскому взрыву. Он дал животным необычайную гибкость в образовании новых форм. При помощи нескольких мелких коррекций — к примеру, изменив время включения гена или те места, где он будет действовать, — можно было создать принципиально новый тип. С другой стороны, как бы сильно ни различались животные, все они подчиняются определенным правилам. Не существует шестиглазых рыб или семиногих лошадей. Похоже, инструментарий перекрывает некоторые пути эволюции.

Кроме того, диверсификацию животных направляла среда, в которой они жили и развивались. Любой новый вид животных должен найти для себя подходящую нишу в экосистеме — только тогда он сможет выжить. Иначе, не успев появиться, он просто исчезнет. Судьба новоявленных животных всегда непредсказуема и часто зависит от случайностей и слепой удачи. Возьмем, к примеру, сухопутных позвоночных. Все они имеют по четыре конечности с пальцами (или, как змеи, происходят от предков, которые их имели). Но единообразие не означает, что именно такое устройство тела лучше всего годится для передвижения по суше. Более того, ноги и пальцы развились у рыб за миллионы лет до того, как они покинули водную среду. Лишь позже выяснилось, что они позволяют позвоночным передвигаться по суше. Все великие трансформации животного мира говорят об одном: эволюция может распоряжаться только тем, что уже возникло по ходу развития жизни.

Монстры эволюции

Стремясь познать законы эволюции животных, биологи создают монстров. Мух с ногами, растущими из головы, мышей с лишними пальцами и лягушек, у которых спинной мозг проходит вдоль брюшка.

Для этого биологам не нужны скальпель и прочие хирургические инструменты. Все, что для этого требуется в каждом случае, — изменить один-единственный ген, «выключить» его, либо изменить время или место производства белка по его инструкции. Эти гены, как выяснили биологи, отвечают за развитие органов животного.

Надо сказать, что попытки создания подобных монстров начались больше ста лет назад. В 1890-х гг. английский биолог по имени Уильям Бейтсон составил каталог всех известных науке наследственных вариаций. Особенно интересовали Бейтсона случаи появления животных, у которых одна из частей тела находилась не на своем месте. Лангуст с усиком на месте глаза. Мотылек с крылышками вместо лапок. Пилильщик с лапками на месте усиков. Среди подобных монстров оказывались даже люди. Иногда, очень редко, люди рождаются с небольшими ребрышками, растущими из шеи, или с лишней парой сосков на груди.

Каким-то таинственным образом подобные мутации приводили к созданию целых частей тела там, где их никогда не было и не должно было быть. Бейтсон назвал процесс, результатом которого были такие уродливые вариации, «гомеозисом». Первые указания на то, как работает гомеозис, были получены в 1915 г., когда Калвин Бриджес из Колумбийского университета сумел связать результат — уродство — с конкретной мутацией определенного гена. Он обнаружил плодовых мушек-мутантов, у которых была лишняя пара крылышек, и выяснил, что мушки с двумя парами крыльев передавали свой мутантный ген и производили такое же четырехкрылое потомство; с тех пор и по настоящее время потомки тех мух живут в биологических лабораториях.

И только в 1980-е гг. ученые придумали, как выделить и изолировать ген, ответственный за эту мутацию. Выяснилось, что это лишь один из целого семейства родственных генов, которые получили название HOX генов. Биологи обнаружили, что путем изменения других HOX генов можно создавать еще более гротескных мушек с ногами на голове или усиками на месте ног.

Изучая подобные мутации, биологи смогли понять, как работают нормальные HOX гены. Эти гены активируются в самом начале развития зародыша мухи, пока он имеет неопределенную дынеобразную форму. Затем зародыш начинает делиться на сегменты, и хотя все они выглядят одинаково, каждый из них уже имеет свое предназначение — из каждого со временем разовьется определенная часть тела мухи. Работа HOX генов в том и состоит, чтобы сообщить клеткам каждого сегмента, во что именно им суждено превратиться — станут ли они частью брюшка или ног, крылышка или усика.

HOX гены выполняют среди генов роль главного управляющего выключателя. Единичный HOX ген может запустить цепную реакцию множества других генов, которые затем вместе сформируют определенную часть тела. Если HOX ген мутирует, он теряет способность отдавать остальным генам правильные команды. В результате такой ошибки из сегмента может вырасти совершенно не та часть тела. В этом и заключался секрет четырехкрылых мушек Калвина Бриджеса.

HOX гены устроены удивительно целесообразно. Биологи могут определить, в каких клетках мушиной личинки имеются активные HOX гены, сделав их светящимися. Они впрыскивают в личинку специальные светящиеся белки, способные связываться с белками HOX генов. Свечение каждого отдельного HOX гена указывает на вполне определенную группу сегментов. Одни HOX гены действуют возле головы мухи, другие включаются в сегментах, расположенных ближе к хвосту. Интересно отметить, что сами HOX гены тоже отражают этот порядок: в хромосоме они выстроены в том же порядке, в каком проявляются в личинке плодовой мушки, головные гены располагаются ближе к началу, хвостовые — ближе к концу.

В 1980-е гг., когда HOX гены плодовых мушек были только открыты, биологи практически ничего не знали о том, как именно эти гены управляют развитием зародыша. Они просто радовались тому, что могут изучать этот процесс вплотную хотя бы на одном отдельно взятом виде. При этом они полагали, что гены, отвечающие за строительство тела плодовой мушки, специфичны для насекомых и других членистоногих. У других животных нет сегментированного экзоскелета, как у членистоногих, поэтому ученые были уверены: раз их тела так сильно отличаются от тел других животных, то и строить их должны совершенно особенные гены.

Радость новых открытий сменилась шоком, когда HOX гены начали обнаруживаться и в других животных — в лягушках, мышах и даже людях; в червях-онихофорах, рачках и морских звездах. В каждом случае части HOX генов оказывались почти идентичными, независимо от того, о каком животном шла речь. Мало того, они располагались в хромосомах в том же порядке, что у плодовых мушек: от головы к хвосту.

Биологи обнаружили, что во всех этих животных HOX гены выполняют одну и ту же работу: определяют назначение различных секций тела зародыша вдоль продольной оси, точно как у насекомых. HOX гены различных животных так похожи, что можно заменить дефектный HOX ген плодовой мушки соответствующим HOX геном мыши, и при этом у мушки на положенных местах вырастут соответствующие части тела. Несмотря на то что последний общий предок мыши и плодовой мухи жил более 600 млн лет назад, этот ген и по сей день сохраняет функциональность.

Регуляторные гены

За последние 20 лет XX в. ученые открыли в личинках животных немало и других регуляторных генов, не менее мощных, чем HOX гены. Если HOX гены определяют деление тела вдоль продольной оси, то другие гены отмечают левую и правую стороны тела, а третьи задают верх и низ. Конечности, к примеру, лапки плодовой мухи, также структурируются регуляторными генами в трех измерениях. Регуляторные гены помогают строить и отдельные органы. Так, без гена Pax-6 муха родится безглазой. Без гена tinman[7] в теле мухи будет отсутствовать сердце.

Как и в случае с HOX генами, каждый из этих регуляторных генов существует и в нашей ДНК, выполняя часто ту же работу, которую он выполняет в геноме мухи. К примеру, мышиная версия гена Pax-6 может покрыть тело мухи дополнительными глазами. Исследуя геномы других животных — будь то кишечнодышащие черви или морские ежи, кальмары или пауки, — биологи обнаруживают, что в них тоже присутствуют эти регуляторные гены.

Регуляторные гены способны при помощи одних и тех же инструкций сооружать очень разные тела. Ноги краба, к примеру, представляют собой полые цилиндры, внутри которых проходят мышцы. Наши собственные ноги формируются вокруг прочной опоры — костей, и мышцы проходят по их наружной части. Тем не менее у крабов и людей много общих регуляторных генов, отвечающих за строение конечностей. То же можно сказать о глазах, хотя глаз человека — единичный элемент желеобразной структуры с регулируемым зрачком, а глаз мухи состоит из сотен крохотных ячеек, которые вместе формируют изображение. Человеческое сердце — это несколько камер, которые посылают кровь в легкие, а затем по всему телу, а сердце мухи — цилиндрический сосуд играющий роль насоса. Но во всех перечисленных случаях в строительстве аналогичных органов совершенно непохожих животных участвуют одни и те же регуляторные гены.

Этот общий генетический инструментарий настолько сложен, что развиться независимо у каждого из животных, которые им пользуются, он просто не мог. Напрашивается естественный вывод: он развился у общего предка всех этих животных. И только после того, как общий предок дал начало разным линиям животных, регуляторные гены начали управлять строительством непохожих, хотя и одинаковых по назначению частей тела. И хотя эти животные стали совершенно разными, их строительный инструментарий за сотни миллионов лет почти не изменился. Вот почему регуляторные гены мыши могут построить глаз мухи.

Гены кембрийского взрыва

После открытия генетического инструментария биологи поняли, что именно он, возможно, стал причиной кембрийского взрыва 535 млн лет назад. Одними из первых в палеонтологической летописи появились примитивные двухслойные животные вроде медуз и губок, чьи зародыши формируются всего из двух слоев. Биологи пытались искать регуляторные гены и у этих животных, но были разочарованы. У кишечнополостных таких генов очень мало, да и используются они совсем не так организованно, как у более совершенных трехслойных животных.

Это совсем неудивительно, если вспомнить, насколько просто тело медузы. У медузы нет правой и левой сторон; для ее тела характерна радиальная симметрия, как для колокола или сферы. Ее рот выполняет одновременно и функции ануса. Ее нервная система представляет собой децентрализованную сеть, а не дерево с центральным стволом и ветвями. Вообще, у нее, в отличие от рака или меч-рыбы, отсутствует сложная организация.

Вывод ясен: лишь после того как примитивные двухслойные самоопределились, у общих предков остальных животных возник генетический инструментарий, о котором идет речь. Именно он сделал возможным появление у этих животных более сложных тел: теперь можно было ориентировать развивающийся зародыш по трехмерной координатной сетке и делить его тело на большее количество частей, строить больше сенсорных органов, выделять больше клеток на переваривание пищи или изготовление гормонов, создавать больше мышечных тканей для передвижения по океану.

Трудно сказать, какое именно тело было у этих общих предков. Но палеонтологи, вероятно, не слишком удивились бы, наткнувшись на небольшое (несколько сантиметров длиной) существо, жившее незадолго до кембрийского взрыва. У этого существа, скорее всего, было червеобразное тело; были рот, кишка и анус; мышцы и сердце; нервная система, организованная вокруг нервного тяжа, и светочувствительный орган; и, наконец, выросты на теле — если не настоящие ножки или усики, то, возможно, какие-то придатки вокруг рта, которые помогали ему есть. Не исключено, что это было бы то самое существо, что оставило анонимные следы в эдиакарских холмах Австралии.

В настоящее время палеонтологи считают, что генетический инструментарий должен был полностью сформироваться еще до кембрийского взрыва — в противном случае сам взрыв просто не мог бы произойти Именно инструментарий сделал возможным возникновение десятков новых животных с совершенно новым, неожиданным строением тела. Эволюции не пришлось каждый раз создавать «с нуля» сеть строительных генов; она просто использовала уже имеющийся инструментарий для создания новых видов ног, глаз, сердец и других частей тела. Возникавшие животные обретали самый разный вид, но по существу придерживались одной фундаментальной программы строительства тела.

Один из ярчайших примеров невероятной гибкости этого процесса — происхождение нашей собственной нервной системы. Не секрет, что у всех позвоночных вдоль спины (с дорсальной стороны, как говорят биологи) проходит нервный тяж, тогда как сердце и пищеварительный тракт располагаются с передней (или вентральной) стороны. У насекомых и других членистоногих все наоборот: нервный тяж проходит с вентральной стороны, а кишки — с дорсальной.

Эта зеркальность в строении тела породила в 1830-х гг. горячие споры между Жоржем Кювье и Жоффруа Сент-Илером. Кювье считал, что анатомия позвоночных и членистоногих различается настолько фундаментально, что их следует относить к двум совершенно отдельным группам. А Жоффруа утверждал, что если схему, лежащую в основе тела членистоногих, кардинально переработать, то получится не что иное, как схема тела позвоночных. Выходит, Жоффруа был прав, но в таком смысле, какого сам он даже вообразить не мог. В самом деле, нервные системы позвоночных и членистоногих различаются разительно. Но управляют их развитием одни и те же гены.

Когда зародыш позвоночного только начинает формироваться, клетки и на дорсальной, и на вентральной его сторонах имеют потенциальную возможность стать нейронами. Тем не менее у нас на вентральной стороне нет нервного тяжа. Дело в том, что клетки на этой стороне зародыша производят белок под названием Bmp-4, который не позволяет клеткам, с которыми он встречается, превратиться в нейроны. Постепенно Bmp-4 распространяется от вентральной к дорсальной части тела зародыша, блокируя по пути образование нейронов.

Если Bmp-4 распространится по всему телу, до самой спинки, то в зародыше позвоночного вообще не сформируются нейроны. Но по мере развития эмбриона его дорсальные клетки начинают выделять белок, блокирующий действие Bmp-4. Этот белок, известный как хордин, защищает дорсальную часть зародыша от Bmp-4, оставляя здешним клеткам возможность превратиться в нейроны. В конечном итоге они продуцируют спинной мозг, который идет вдоль спины у позвоночных.

Сравним эту последовательность событий с тем, что происходит в зародыше дрозофилы. В самом начале, когда зародыш только формируется, он тоже способен образовывать нервы с обеих сторон — и на спинке, и на брюшке. Но затем на дорсальной стороне начинает производиться белок Dpp — вместо Bmp-4 на вентральной стороне у позвоночных. Dpp распространяется в сторону спинки, где его останавливает особый белок, sog. Вентральная сторона мухи, защищенная от действия Dpp, сохраняет способность образования нейронов и, соответственно, нервного тяжа.

Наборы генов, отвечающие за все эти события, не только выполняют аналогичную функцию в насекомых и позвоночных, но и устроены почти идентично. Гены, блокирующие формирование нейронов, — Dpp и Bmp-4 — аналоги, как и их антагонисты — sog и хордин. Более того, они настолько похожи, что если ген sog, взятый из дрозофилы, ввести в эмбрион лягушки, то у него в брюшке начнет формироваться второй нервный тяж. Получается, что одни и те же гены строят в насекомых и в лягушке одни и те же структуры, но как бы в зеркальном отражении.

Похожие гены, выполняющие одинаковую работу, должны быть связаны общим происхождением. Джон Герхарт из Калифорнийского университета в Беркли выдвинул предположение о том, как могла произойти такая трансформация. У первых животных с генетическим набором инструментов формировалось скорее несколько небольших нервных тяжей вдоль тела с разных его сторон, а не один. Эти животные-предки были носителями гена, из которого позже возникли другие гены — те, что отвечают за производство как хордина, так и sog; производимый им белок способствовал росту нейронов во всех местах, где в эмбрионе должен был сформироваться нервный тяж.

Именно от этого общего предка во время кембрийского взрыва взяли начало все наследственные линии. В линии, давшей начало членистоногим, все нервные тяжи соединились в один большой тяж, идущий по вентральной части тела. У позвоночных все нервные тяжи сместились к спине. Но первоначальные гены, ответственные за строительство этих тяжей, никуда не делись; изменилось лишь место, где они активизировались. Таким образом, со временем они стали зеркальным отражением друг друга, чем произвели на Жоффруа Сент-Илера сильное впечатление.

Дупликация генов и появление позвоночных

В ходе кембрийского взрыва позвоночные получили не только спинной мозг, проходящий вдоль спины. При помощи генетического инструментария им удалось обзавестись глазами, сложным мозгом и скелетом. Одновременно позвоночные стали мощными пловцами и прекрасными охотниками и с тех пор неизменно занимают нишу господствующих хищников моря и суши.

Древнейшие известные ученым останки позвоночных — обнаруженные в Китае существа, похожие на миногу, — относятся примерно к середине кембрийского взрыва и имеют возраст 530 млн лет. Чтобы понять, как появились первые позвоночные, ученые тщательно исследовали нашего ближайшего беспозвоночного родича[8]. Это животное — ланцетник — на первый взгляд не производит особого впечатления. Больше всего оно напоминает вытащенную из банки безголовую сардину. Ланцетник начинает жизнь в виде крошечной личинки; он дрейфует в теплых прибрежных водах и глотает кусочки пищи, которые ему попадутся. Вырастая до сантиметра длиной, взрослый ланцетник строит нору в песке, высовывает наружу голову и продолжает питаться, фильтруя воду.

Но каким бы непритязательным ни казался ланцетник, у него немало общих черт с позвоночными. В передней части тела у него имеются щели, соответствующие жабрам у рыб. Вдоль спины у него проходит нервный тяж, жесткость которому придает хорда, или спинная струна. Позвоночные тоже имеют хорду, но лишь на эмбриональной стадии. Со временем, по мере того как укрепляется позвоночный столб, хорда исчезает.

Иными словами, некоторые детали строения тела позвоночных появились еще у общего предка позвоночных и ланцетника. В то же время ланцетниковым недостает многого из того, что присуще позвоночным. К примеру, у них нет глаз, а нервный тяж оканчивается просто крохотным утолщением, а не настоящей массой нейронов, которую можно было бы с первого взгляда принять за мозг.

Но и у ланцетника можно найти органы, предшествовавшие возникновению глаз и мозга. Так, ланцетник воспринимает свет при помощи специального углубления, выстланного светочувствительными клетками; эти клетки объединены в сеть, подобно клеткам сетчатки у позвоночных, и присоединены к переднему концу нервного тяжа — примерно так же, как наши глаза к нашему мозгу. Пусть в крохотном утолщении на переднем конце нервного тяжа ланцетника всего несколько сотен нейронов (в человеческом мозге их 100 млрд), но он, как и мозг позвоночных, разделен в упрощенном варианте на функциональные части.

Сходство между нервным тяжем ланцетника и мозгом позвоночных распространяется и на гены, управляющие их строительством. HOX гены и другие регуляторные гены, размечающие головной и спинной мозг позвоночного, делают ту же работу и в эмбрионе ланцетника, причем почти точно в том же порядке — от головы к хвосту. В клетках развивающегося светочувствительного пятна ланцетника действуют те же гены, которые строят глаз позвоночного. Можно с уверенностью предположить, что у общего предка ланцетниковых и позвоночных те же гены отвечали за строительство такого же примитивного мозга.

После того как предки позвоночных и ланцетниковых разделились, наши предки прошли необычайный эволюционный путь. Если у ланцетника имеется комплект из тринадцати HOX генов, то у позвоночных — четыре таких комплекта, и каждый из них организован в том же порядке (от головы к хвосту). Скорее всего, дублирование первоначального набора HOX генов было вызвано мутациями. После учетверения новые гены ожидала разная судьба. Некоторые из них продолжали выполнять прежние функции и остались HOX генами. Но другие эволюционировали и получили возможность влиять на формирование зародыша иными способами.

Благодаря этой вспышке генного воспроизведения у наших предков начали появляться тела все более сложного строения. Позвоночные смогли отрастить себе носы, глаза, скелеты и мощные глотательные мышцы. В какой-то момент древней эволюции позвоночных HOX гены, отвечавшие за развитие зародыша от головы к хвосту, получили новую функцию: строительство плавников. Плавники помогали позвоночным плавать и маневрировать в воде более эффективно, чем их ланцетовидным предкам.

Вместо того чтобы просто отфильтровывать пищу из воды, ранние позвоночные теперь смогли заняться охотой. Они загоняли и добывали крупных животных, а потому и сами могли эволюционировать и стать крупнее. Благодаря генетической революции ранние позвоночные со временем дали начало акулам, анакондам, людям и китам. Без этих новых кембрийских генов мы и сегодня могли походить на ланцетников и дрейфовать в волнах океана, поводя своей крохотной безмозглой головкой.

Кто поджег кембрийский фитиль

Ключевым и необходимым условием кембрийского взрыва была эволюция строительного набора, о котором мы говорили, — нашего генетического инструментария. Однако после его появления эволюционный взрыв произошел далеко не сразу. Животные, успевшие обзавестись генетическим инструментарием, жили и развивались, вероятно, десятки миллионов лет, прежде чем 535 млн лет назад в палеонтологической летописи появились первые свидетельства кембрийского взрыва. Но почему? Если эти животные уже несли в себе громадный эволюционный потенциал, что не давало им пуститься во все тяжкие?

Вероятно, генетический инструментарий этих ранних животных можно сравнить с запалом бомбы, ожидающим, пока кто-нибудь поднесет спичку к бикфордову шнуру. До кембрия океаны были не слишком благоприятным местом для эволюции животных. Крупные активные животные, появившиеся в океанских водах в результате кембрийского взрыва, нуждались в кислороде, а химический состав пород, сформировавшихся на дне докембрийских морей, говорит о том, что кислорода в воде почти не было. Фотосинтезирующие водоросли и бактерии на поверхности воды в изобилии производили кислород, но в глубину он почти не проникал. Кислорододышащие бактерии-падальщики благополучно съедали производителей кислорода после их гибели все там же, на поверхности, а остальная часть океанских вод оставалась по-прежнему бедна кислородом.

Около 700 млн лет назад содержание кислорода в воде начало повышаться и через некоторое время достигло, скажем, половины от нынешней его концентрации. Связано это было с разломом суперконтинента. В результате активных геологических процессов большое количество углерода было увлечено на дно новых океанских бассейнов, а в атмосфере появилось больше свободного кислорода. Некоторая часть этого кислорода проникла и в океанские глубины.

После того как содержание кислорода в воде выросло, для планеты в целом, судя по всему, наступили нелегкие времена. Как утверждает гарвардский геолог Пол Хоффман, на Земле тогда наступил ледниковый период и ледники разрослись едва ли не до экватора. Для их таяния понадобилось, чтобы вулканы выпустили в атмосферу достаточно углекислого газа и заработал парниковый эффект. Жизнь во время этого глобального ледникового периода сохранялась в отдельных местах, где условия оставались терпимыми; эволюция при этом могла ускориться, возникали новые виды с новыми адаптационными механизмами. А поскольку новые генетические приспособления уже имелись, животные могли отозваться на эволюционное давление невиданной вспышкой генетического разнообразия — кембрийским взрывом.

Возможно, начало кембрийскому взрыву положили гены и физические условия, но, судя по всему, именно экология определила его продолжительность и масштабы. Среди новых животных, появившихся на свет в начале кембрийского периода, были и те, кто мог — впервые за всю историю жизни на Земле — питаться водорослями. Эти беспозвоночные обзавелись специальными ветвистыми отростками, позволявшими им улавливать пищу, и добились невероятного успеха. (Сегодня их успех развивают громадные армии изящных креветок, водяных блох и других потребителей мельчайших водорослей.) Эти существа, став достаточно многочисленными, стимулировали появление крупных и быстрых хищников, которыми, в свою очередь, могли питаться еще более крупные хищники. В океане быстро сформировалась сложная сеть переплетающихся пищевых цепочек.

Новые факторы эволюционного давления — необходимость пастись или охотиться — могли вызвать еще большую диверсификацию, причем не только животных, но и водорослей. Из водорослей в древнейших слоях палеонтологической летописи чаще всего встречаются так называемые акритархи. В докембрии акритархи были мелкими и неинтересными, но в ходе кембрийского взрыва они внезапно отрастили себе шипы и другие украшения; кроме того, появились гораздо более крупные формы. Вероятно, так развивались механизмы защиты от поедателей водорослей, ведь проглотить нечто крупное и колючее гораздо труднее. Растительноядные развивали у себя механизмы обхода защитных приспособлений и собственные устройства защиты — шипы, раковины, панцири — от хищников, которым тоже приходилось искать новые методы охоты, обзаводиться когтями и мощными зубами, а также более тонкими органами чувств. Кембрийский взрыв превратился в самоподдерживающуюся цепную реакцию.

Окончен бал…

Тем не менее через несколько миллионов лет реакция закончилась. Палеонтологи признают лишь один тип живых существ, ископаемые остатки которых появились после кембрийского взрыва, только в ордовике, — это мшанки, колониальные животные, образующие на дне океана настоящий ковер. Сказанное не означает, что животные с тех пор совсем не менялись. Если все первые позвоночные были похожи на миногу, то сейчас среди них наблюдается поразительное разнообразие — от белоснежной цапли до древесного кенгуру, рыбы-молота, летучей мыши и морской змеи. Но у всех этих животных по два глаза, мозг помещен в череп, а мышцы крепятся к костям скелета. Эволюция, конечно, мощная созидательная сила, но ее возможности не бесконечны. Более того, она работает при жестких ограничениях и попадает в самые разные ловушки.

Когда в биосфере возникает вспышка эволюционных трансформаций, новые виды начинают искать себе подходящие экологические ниши. Так, цихлиды озера Виктория приспособились соскребать с камней водоросли, есть насекомых и использовать другие пищевые ресурсы водоема. Первые рыбки, научившиеся соскребать водоросли, делали это не очень хорошо, но при отсутствии конкурентов — других обскребывателей водорослей — даже такого качества работы было достаточно. Развиваясь, эти цихлиды создавали новые экологические ниши для других видов цихлид: хищников, способных заглатывать мелких рыбок целиком, тех, кто чистит чешуйки другим рыбам, тех, кто крадет чужие яйца, и т. д. Жизнь постоянно создает новые экологические ниши, но, вероятно, их количество все же не бесконечно. Рано или поздно виды начинают конкурировать за них между собой. Кто-то при этом побеждает, кто-то проигрывает. В более старых африканских озерах, таких как Малави или Танганьика, у цихлид было несколько лишних миллионов лет на эволюцию, но они не изобрели ни одной экологической ниши, которой не было бы у цихлид молодого озера Виктория.

Скорее всего, кембрийский взрыв закончился тогда, когда земная экосистема заполнилась — примерно так же, как экосистема озера, но в более грандиозном масштабе. Во время кембрийского взрыва на Земле впервые появились крупные мобильные хищники, сверлильщики и растительноядные — пасущиеся на водорослях. Вполне возможно, что эти животные заполнили все доступные экологические ниши и так приспособились, что получили возможность удерживать свои владения от чужаков. Пропала возможность испытывать новые схемы, и эволюция захлебнулась: новые типы животных не могли утвердиться.

Иногда эволюционная вспышка прекращается потому, что порождаемая ею генетическая сложность блокирует путь самой себе. Древнейшие животные были предельно просты, у них было всего несколько типов клеток, связанных относительно небольшим числом генов развития. К концу кембрийского взрыва их потомки обладали уже множеством различных клеточных типов и пользовались для строительства тела сложной сетью взаимодействующих генов. Нередко случалось, что ген, который изначально помогал строить одну структуру или один орган, в конце концов оказывался задействованным в строительстве нескольких разных органов. Так, HOX гены строят у позвоночных не только мозг и позвоночник, но также плавники и ноги. Когда ген выполняет несколько различных задач, изменить его сложнее. Даже если какая-то мутация окажется благоприятной и улучшит одну из структур, которые этот ген помогает строить, другие при этом могут пострадать или даже полностью разрушиться. Эволюция за время кембрийского взрыва тоже изменилась; если в начале его процесс эволюции можно было сравнить с перестройкой одноэтажного домика, то в конце — каждое изменение уже напоминало по сложности задачи перестройку небоскреба.

Поскольку эволюция может заниматься только ремесленными работами, она не способна создать наилучший из возможных проектов. Да, эволюция создала множество приспособлений, при виде которых современные инженеры замирают в восхищении и вздыхают от зависти; тем не менее нередко ей приходилось выбирать из множества зол меньшее. Наши глаза, к примеру, — несомненно, впечатляющие видеокамеры, тем не менее они имеют несколько фундаментальных недостатков.

Свет, проникая в глаз позвоночного, проходит сквозь желеобразное стекловидное тело и попадает на фоторецепторы сетчатки. Но нейроны сетчатки на самом деле обращены назад, как будто мы пытаемся рассмотреть собственный мозг. Так что свету, прежде чем попасть на нервные окончания, способные его регистрировать, необходимо преодолеть несколько слоев нейронов и плотную сеть капилляров.

После того как свет все же попадает на обращенные назад фоторецепторы сетчатки, им (фоторецепторам) приходится посылать сигналы обратно через все слои сетчатки к передней части глаза. Одновременно нейроны обрабатывают сигнал и делают изображение резче. Верхний слой нейронов сетчатки соединен со зрительным нервом, который располагается на ее поверхности. Сам нерв, направляющийся назад к мозгу, пронизывает все слои нейронов и капилляров.

Получается, что вся эта конструкция «спроектирована глупейшим образом», как резко, но справедливо выразился биолог-эволюционист Джордж Уильяме. Слои нейронов и капилляров играют роль светофильтра и снижают интенсивность света, попадающего в конце концов на фоторецепторы. Чтобы скомпенсировать ослабление сигнала, наш глаз совершает непрерывные крохотные движения и заставляет изображение предмета, который мы видим, двигаться по сетчатке. Мозг затем обрабатывает множество нечетких картинок, убирает помехи и выстраивает четкое изображение.

Еще один недостаток — способ, при помощи которого нейроны сетчатки соединяются со зрительным нервом на ее поверхности. Зрительный нерв блокирует часть входящего света и создает в каждом глазу слепое пятно. Эти слепые пятна не мешают нам видеть только потому, что мозг совмещает изображения от обоих глаз, нейтрализует оба слепых пятна и создает полную картинку.

Еще одна не слишком удачная часть конструкции глаза — способ крепления сетчатки. Фоторецепторы снабжены тончайшими и очень нежными нервными окончаниями, и их нельзя прочно закрепить на надежном основании. Вместо этого они достаточно свободно прикрепляются к особому слою клеток, который выстилает всю стенку глаза, — к пигментному эпителию сетчатки. Пигментный эпителий играет в работе глаза важную роль. Он поглощает лишние фотоны так, чтобы они не отражались от глазного дна и не попадали вновь на фоторецепторы, размывая картинку В нем также проходят кровеносные сосуды, которые снабжают сетчатку питательными веществами и уносят отходы, когда сетчатка избавляется от старых отработавших фоторецепторов. Но связь между пигментным эпителием и сетчаткой очень хрупка и ненадежна, что делает наши глаза чрезвычайно чувствительными. Резкий удар в голову — и сетчатка может просто оторваться от основы и беспорядочно перемещаться внутри глаза.

Но ведь глаз может прекрасно функционировать, имея другую форму! Чтобы убедиться в этом, достаточно сравнить глаз позвоночного с глазом кальмара. Глаз кальмара — настолько мощное оптическое устройство, что позволяет его хозяину видеть добычу почти в полной темноте. Он тоже — как и глаз позвоночных — имеет сферическую форму и снабжен линзами, но свету, проникшему в глаз и попавшему на его внутреннюю стенку, не приходится пробиваться сквозь путаницу обращенных назад нейронов. Вместо этого свет сразу попадает на огромное количество светочувствительных окончаний зрительного нерва кальмара. Зрительные сигналы от нервных окончаний идут прямо в мозг кальмара; им не приходится возвращаться назад и вновь преодолевать на пути слои нейронов.

Чтобы разобраться в недостатках глаза позвоночных (равно как и в его достоинствах), биологи-эволюционисты обращаются в прошлое, к его истокам. Лучшие указания на раннюю эволюцию глаза позвоночных исходят все от того же ланцетника, нашего ближайшего беспозвоночного родича. Нервный тяж ланцетника представляет собой трубку, а выстилающие ее изнутри нейроны снабжены волосяными выростами, которые называются ресничками. На переднем конце трубки имеются нейроны, выполняющие роль светочувствительного пятна-глаза. Как и другие нейроны ланцетника, эти светочувствительные клетки обращены внутрь; из этого следует, что они регистрируют только свет, отраженный от противоположной стенки полупрозрачного тела ланцетника и попавший внутрь трубки.

Сразу перед светочувствительными нейронами нервная трубка заканчивается, причем клетки, выстилающие ее передний конец, содержат внутри себя темный пигмент; ученые подозревают, что этот слой темных клеток работает как щит, заслоняя свет с передней стороны ланцетника. А поскольку свет попадает на светочувствительное пятно не со всех направлений, ланцетник может использовать этот орган для ориентации в воде.

Терстон Лакалли, биолог из канадского Университета Саскачевана, обнаружил замечательное сходство между строением светочувствительного пятна ланцетника и строением глаза у зародыша позвоночного. Первоначально мозг позвоночного формируется как полая трубка, очень похожая на нервную трубку ланцетника; как у ланцетника, нервные клетки в ней обращены внутрь. Затем стенки трубки образуют на переднем конце два выроста наружу, напоминающие пару рогов; из этих выростов и развиваются глаза. На кончике каждого «рога» формируется чашевидное углубление, на внутренней поверхности которого размещаются нейроны сетчатки, по-прежнему обращенные нервными окончаниями внутрь. Внешнюю поверхность захватывают пигментные клетки.

Если вскрыть глазную чашу и рассмотреть распределение клеток, обнаружится та же топография, что и в светочувствительном пятне ланцетника. Нейроны сетчатки все также смотрят внутрь, в центральную полость нервной трубки. Палочки и колбочки сетчатки представляют собой высокоразвитые варианты ресничек ланцетника. Нервная трубка в эмбрионе позвоночных продолжает развиваться, и в конце концов светочувствительные элементы оказываются обращенными к задней стенке глаза. Более того, нейроны сетчатки в зародыше позвоночных по-прежнему располагаются между пигментными клетками и зрительным нервом — точно так же, как в голове ланцетника.

Сходные черты и родственные связи такого рода лучше всего видны на самых ранних стадиях развития эмбриона. Чем больше он развивается, тем труднее становится увидеть сходство. Стенки глазной чаши так истончаются, что со временем клетки внутренней и внешней ее сторон начинают соприкасаться. В результате возникает особая, чувствительная связь между сетчаткой и пигментным эпителием.

Сходство между глазами эмбриона и светочувствительным пятном ланцетника помогает представить и понять, почему наши глаза так странно устроены. Светочувствительное пятно нашего ланцетникоподобного предка эволюционировало в пару чашевидных фотодетекторов, отходивших в стороны от нервной трубки. Чашевидная форма позволяла им захватывать больше света, чем плоское светочувствительное пятно. Постепенно чаша замкнулась в сферический глаз, который уже мог формировать на сетчатке изображение. Но поскольку исходным материалом для глаза позвоночных послужила конструкция светочувствительного пятна ланцетника, он так и остался с нейронами, обращенными прочь от входящего света.

Строение светочувствительного пятна у предков позвоночных серьезно ограничило формы, которые позже мог принять их глаз. Эволюция лишь приспособила, как смогла, анатомию ланцетника к дальнейшим, куда более серьезным задачам. Ради того, чтобы получить вместо светочувствительного пятна полноценный глаз, нам приходится мириться и со слепыми пятнами, и с риском отслоения сетчатки, и с ограниченностью света. Тем не менее преимущества, которые дает нам способность формировать изображения, перевешивает все неизбежные недостатки конструкции глаза.

После появления базовой конструкции глаза — с линзой, желеобразной структурой и обращенной назад сетчаткой — многие линии позвоночных продолжали эволюционировать и развили у себя новые варианты глаза, способные лучше работать в какой-то конкретной среде. К примеру, у трех линий рыб в процессе эволюции независимо появились двойные глаза. Эти глаза снабжены не одной, а двумя линзами; когда рыба плавает по поверхности воды, один ее «зрачок» обращен вверх, в воздух, а второй — вниз, в воду. Форма верхней части глаза приспособлена к тому, чтобы фокусировать свет, проникающий из воздуха, а нижняя идеально адаптирована к оптическим свойствам воды.

Тем временем некоторые позвоночные на суше — к примеру, птицы и приматы — развили у себя необычайно мощное зрение. У них появилось плотное скопление фоторецепторов в небольшой области сетчатки, известной как зрительная ямка; нейроны, которые в обычных условиях преграждают путь входящему свету, здесь расступаются. Тем не менее, несмотря на все инновации, сетчатка позвоночных остается обращенной назад. Благодаря эволюционным ограничениям в течение 530 млн лет наши дети никогда не будут видеть как кальмары.

Рыбы с пальцами и жизнь на суше

Когда шарик падает на колесо рулетки, его судьбу нельзя считать совершенно случайной. Он не может, к примеру, отскочить от колеса и прилипнуть к потолку. Он не остановится на перегородке между двумя номерами. Сила тяжести, энергия броска и форма перегородок на колесе заставляют шарик остановиться на одном из номеров. Его судьба будет выбрана из конечного — более того, ограниченного — числа вариантов, но все же она остается непредсказуемой.

То же можно сказать и об эволюции. Она ограничена определенными условиями, но это не означает, что сам процесс разворачивается равномерно и предсказуемо. Внутренние силы эволюции — механизм взаимодействия генов в процессе строительства организма — сталкиваются с внешними силами климата, географии и экологии, такими, например, как атмосферные фронты. Когда внешние и внутренние силы сталкиваются, возникают эволюционные ураганы и торнадо. В результате ученым приходится быть очень осторожными в своих попытках реконструировать ход эволюционных трансформаций — ведь так просто представить простую линейную историю там, где реальность была парадоксально нелогичной.

Итак, 530 млн лет назад эволюция жизни на Земле прошла важный рубеж — в период кембрийского взрыва возникли первые позвоночные. Следующий рубеж был преодолен 360 млн лет назад, когда позвоночные вышли на сушу. За 180 млн лет, которые прошли между этими двумя вехами, позвоночные эволюционировали в громадное число самых разнообразных рыб — включая предков сегодняшних миног, акул, осетров, двоякодышащих рыб, а также вымершие формы, такие как бесчелюстные бронированные галеаспиды и панцирные рыбы. Но за все это время ни одно позвоночное не ходило по суше. Лишь 360 млн лет назад позвоночные наконец вышли из океана на сушу. От тех, первых, произошли все сухопутные позвоночные (обладающие четырьмя конечностями) — все без исключения, начиная с верблюдов, игуан и туканов и заканчивая человеком.

Поначалу ученые склонны были рассматривать этот переход в героическом ключе, как часть некоего заранее предначертанного пути к возникновению человечества. Самые отважные морские рыбы, говорилось в этой героической саге, выползли на сушу, отталкиваясь плавниками, и развили у себя легкие и ноги, которые должны были помочь им завоевать сушу, подняться и достичь вершин. В 1916 г. Ричард Лалл, палеонтолог из Йельского университета, написал: «Выход из ограничивающих вод в неограниченное пространство воздуха был абсолютно необходим для дальнейшего развития».

На самом деле происхождение четвероногих выглядело совершенно иначе, но даже сами палеонтологи подошли к пониманию этого процесса только в 1980-е гг. До этого времени данных о том, что представляли собой первые четвероногие, было очень мало. Исследователи знали, конечно, что из всех рыб ближе всего к четвероногим были древние лопастепёрые рыбы. Из современных к лопастепёрым относятся двоякодышащие рыбы, живущие в Бразилии, Африке и Австралии. Эти пресноводные рыбы могут дышать воздухом, если их озеро вдруг пересохнет или содержание кислорода в воде резко упадет. Еще один их представитель — кистепёрая рыба целакант, массивное большеротое создание, живущее на глубине нескольких сотен футов у берегов Южной Африки и Индонезии.

Для скелета лопастепёрых рыб характерны некоторые особенности, сближающие их с четвероногими. К примеру, их крепкие мускулистые плавники устроены примерно так же, как наши ноги и руки: одна длинная кость, ближайшая к телу, которая соединяется с парой длинных костей, а те в свою очередь соединяются с группой более мелких косточек. Сегодня двоякодышащие рыбы и целаканты — единственные представители лопастепёрых, но 370 млн лет назад лопастепёрые были в числе самых разнообразных групп рыб. Палеонтолога обнаружили, что некоторые из вымерших лопастепёрых были даже больше похожи на четвероногих, чем ныне живущие виды.

Что касается древнейших четвероногих, палеонтологам тогда был известен всего один вид: существо под названием Ichthyostega, жившее 360 млн лет назад. Это почти метровое четвероногое существо, найденное в 1920-е гг. в горах Гренландии, очевидно, было четвероногим, но его приплюснутый череп напоминал скорее череп лопастепёрой рыбы, чем черепа более поздних четвероногих.

Данный текст является ознакомительным фрагментом.