Генетика развития
Генетика развития
Не вызывает сомнений, что генетика развития представляет собой сейчас одну из наиболее активных областей биологии в отношении как теоретических построений, так и эксперимента. Однако в течение трех первых десятилетий XX в., когда и генетика, и биология развития находились в центре внимания ученых, мало кто пытался объединить эти науки. Эмбриологи были поглощены механикой процесса онтогенеза, а генетики занимались выяснением законов, по которым происходит передача признаков. Эти две области биологии развивались в значительной степени разобщенно. Более того, хотя открытия генетиков играли важную роль в развитии неодарвинизма, об экспериментальной эмбриологии этого сказать нельзя.
Такое, казалось бы, странное отсутствие синтеза этих двух наук было вызвано двумя обстоятельствами. Первым, которое уже обсуждалось, было отрицание экспериментальными эмбриологами биогенетического закона, а вторым - отрыв эмбриологии от генетики. Созданная Ру механика развития представляла собой попытку более точно определить механизмы развития, т. е. выявить в онтогенезе причинно-следственные зависимости, которые можно определять экспериментально. Прямой параллелью этой экспериментальной механистической парадигме служила основанная Т. Г. Морганом и развивавшаяся американская школа генетики. Группа Моргана вобрала в себя многие методологические предпосылки эмбриологов, в частности предпочтение отдавалось экспериментальным методам. Однако слияние генетики с эмбриологией задерживалось из-за того, что эмбриологи отказывались признавать менделевскую генетику важным компонентом онтогенеза. Этот отказ был весьма категорично сформулирован в 1928 г. в статье Лилли (F. R. Lillie) «Ген и процесс онтогенеза»:
«В настоящее время генетика постулирует, что на протяжении всей жизни данного индивидуума его гены в любом месте и в любое время всегда одинаковы, если не считать возникновения мутаций или аномальных расхождений хромосом, которые в дальнейшем подчиняются все тем же законам. Важнейшая проблема развития - это именно та дифференцировка в пространстве и во времени на протяжении всей жизни данного индивидуума, которую генетика, по-видимому, явно игнорирует. Успехи генетики и физиологии развития могут привести лишь к более резкому разграничению этих двух областей науки, и все надежды на их объединение (в вейсмановском смысле), по моему мнению, тщетны. Тем, кто желает, чтобы генетика легла в основу физиологии развития, придется объяснить, каким образом некий неизменяющийся комплекс может направлять течение упорядоченного потока развития».
Такое категорическое отрицание было обусловлено тремя причинами. Во-первых, ранние менделисты представляли себе ген как некую частицу, передаваемую потомкам в сперматозоиде и яйце. Именно эти корпускулярные гены, или факторы, обеспечивают развитие индивидуума в процессе онтогенеза. Такое представление, по мнению экспериментальных эмбриологов, попахивало преформизмом - теорией, давно уже впавшей в немилость.
Во-вторых, менделевское направление молчаливо допускало, что при делении соматических клеток компоненты ядра-хромосомы, а следовательно, и гены, точно реплицируются и все клетки получают совершенно идентичные их наборы. Это бросало вызов результатам, полученным экспериментальной эмбриологией. Было хорошо известно, что процесс онтогенеза состоит в последовательном распределении цитоплазмы яйца между клетками, которое сопровождается постепенным сужением ее морфогенетических потенций. Эти два факта, с точки зрения эмбриологов, означали, что гены не могут управлять онтогенезом. Эмбриологи считали, что главная роль принадлежит не ядру, а цитоплазме, о чем свидетельствует приведенная выше цитата из статьи Лилли (Lillie).
И наконец, в-третьих, между менделистами и эмбриологами существовало глубокое изначальное расхождение: менделевскую генетику интересовала главным образом передача признаков из поколения в поколение, тогда как эмбриология занималась развитием признаков в пределах одного поколения. Те и другие исследования достигли быстрых успехов в начале XX в. Школа Моргана добивалась гигантских успехов в изучении передачи признаков; столь же успешно развивались исследования американской (Lillie, ?. В. Wilson, Conklin, Harrison) и европейской (Spemann, Boveri, Hertwig) групп экспериментальных эмбриологов. Каждое из этих направлений оценивало по достоинству работы другого, но, к сожалению, перекинуть мост через разделявшую их пропасть было невозможно.
Хотя большинство экспериментальных эмбриологов не занимались проблемами эволюции и генетики, было несколько ученых, предпринимавших попытки к их синтезу с эмбриологией. Первым среди них был Дриш (Driesch), пытавшийся примирить расхождение, связанное с противопоставлением друг другу ядра и цитоплазмы. В 1894 г. он построил гипотезу, в которой постулировал, что развитие не обусловливается одним лишь ядром или одной лишь цитоплазмой, а представляет собой результат взаимодействия между ними. Эта гипотеза звучит вполне разумно даже сегодня, спустя почти 90 лет, однако современники Дриша, по-видимому, ее игнорировали.
Вторую попытку синтеза сделал спустя несколько лет, в 1932 г., Морган. Его книга «Эмбриология и генетика» была написана с этой целью. Одни ее главы посвящены эмбриологии, а другие - генетике, однако связь между ними, к сожалению, почти отсутствует.
Вероятно, самую значительную попытку полного синтеза предпринял Рихард Гольдшмидт (Richard Goldschmidt). Он начал свою научную деятельность как анатом; склонность к классической биологии он сохранил на всю жизнь, и этим, возможно, объясняются некоторые проблемы, с которыми столкнулись его идеи. Его интересовала не только передача признаков, но также и физиологические аспекты генетики: каким образом унаследованные факторы реализуются в фенотипе, т.е. как функционируют гены. Эти идеи суммированы в его книге «Физиологическая генетика», опубликованной в 1938 г. Главный вклад в науку этой и других его работ - концепция, согласно которой гены регулируют скорость процессов развития и могут таким образом оказывать сильное влияние на зависящие от них события в течение онтогенеза. Такое постулирование «генов скорости» близко идее Гексли о гетерогоническом росте при аллометрии. Если данный ген способен влиять на скорость роста какой-то определенной структуры, то он будет контролировать размеры этой структуры относительно размеров остального организма. Кроме того, можно представить себе, что гены скорости регулируют абсолютные сроки появления любой данной структуры. Онтогенез слагается из связанных между собой и взаимозависимых процессов; т.е. формирование каждой отдельной структуры зависит как во времени, так и в пространстве от формирования других структур. Таким образом изменения в сроках возникновения одного морфогенетического события могут иметь глубокие последствия, изменяя многие дальнейшие зависящие от него ступени онтогенеза. И Гольдшмидт, и Гексли понимали важность изменений в ходе эволюции сроков морфогенетических процессов, особенно если это касается неотении, наличия рудиментарных органов и формирования крупных специализированных структур. Несмотря на успех выдвинутых им концепций, с одной проблемой Гольдшмидт справиться не мог. Ему трудно было представить себе, как крупное морфологическое изменение, а в особенности эволюция новой структуры, может быть достигнуто путем отбора мутаций, возникающих в генах, которые контролируют мелкие структуры или короткие отрезки онтогенеза.
«Рассмотрим в качестве примера птицу... Возможно, что первоначальный вид был зерноядным, тогда как в наличии имелась свободная ниша для формы, питающейся нектаром. В результате адаптивной радиации возникает такая форма, которая может быть названа новым родом. Но каким же образом такое сложное генетическое изменение, ведущее путем накопления мелких мутационных изменений в строении клюва и языка к возникновению совершенного механизма для высасывания нектара, появляется именно в то время, когда имеются шансы на то, что оно будет подхвачено отбором? При попытке разработать эту проблему во всех деталях очень скоро становится ясно, что для объяснения такого макроэволюционного процесса необходимо помимо принципов неодарвинизма что-то еще».
Для того чтобы преодолеть эту проблему, Гольдшмидт постулировал два типа эволюционных изменений, которые он обсуждал в своей книге «Материальные основы эволюции». Изменения частот генов, наблюдаемые и изучаемые популяционной генетикой, он относил к микроэволюции, а возникновение крупных морфологических изменений, которые он любил называть «перспективными монстрами», - к макроэволюции. Гольдшмидт превосходно уловил самую суть этой основной проблемы эволюционной теории, однако предложенное им объяснение двух типов изменений было далеко не столь удачным. В сущности, его объяснение способствовало его изоляции от тех самых групп ученых, которых ему хотелось бы убедить. Он утверждал, что микроэволюция ведет лишь к повышению приспособленности и изменчивости в пределах вида. Но этими мелкими изменениями, возникающими в результате генных мутаций, нельзя объяснить морфологические изменения, наблюдаемые в процессе эволюции крупных групп растений и животных. На основе этого заключения работа всей школы популяционной генетики, например Холдейна (Haldane), Фишера (Fischer), Райта (Wrigt) и Добржанского, представлялась хотя и интересной, но не имеющей отношения к эволюции.
Поскольку Гольдшмидт не мог найти объяснения крупным морфологическим изменениям в рамках доктрины, принятой менделевской генетикой, он создал собственную теорию наследственности. Он воспользовался только что открытым явлением эффекта положения, т.е. обнаружением того, что в некоторых случаях положение данного гена в хромосоме сильно влияет на его экспрессию. Для того чтобы объяснить далеко идущие морфогенетические изменения в чрезвычайно сложной взаимодействующей системе - развивающемся зародыше, он допустил возможность столь же далеко идущих глобальных изменений в пределах ядра. Он предположил, что макроэволюция осуществляется путем макромутаций. Изменению подвергается «хромосома как целое», и изменение этого целого изменяет зародыш тоже в целом. Эта гипотеза, конечно, противоречила широко распространенному представлению о корпускулярной природе менделевского гена. Экспериментальные данные подтверждали это преобладающее мнение, и гипотеза Гольдшмидта приобрела мало сторонников. К сожалению, по причине выдвинутого Гольдшмидтом нетрадиционного объяснения механизма макроэволюции его убеждение о существовании различия между макро- и микроэволюцией оказалось неприемлемым для неодарвинистов.
Почему было так трудно произвести последовательный современный синтез эмбриологических и генетических представлений? Для того чтобы убедительно показать, что гены контролируют онтогенез и, что важнее, как они это делают, необходимо было сначала понять, как функционируют гены и как регулируется их функция. Данные об этом появились, в сущности, лишь после зарождения современной молекулярной биологии. Ограничимся перечислением лишь немногих из тех предпосылок, которые были абсолютно необходимы для подлинного понимания генетического контроля онтогенеза: гипотеза Бидла и Татума «один ген - один фермент» (Beadle, Tatum), расшифровка структуры ДНК Уотсоном и Криком (Watson, Crick), модель оперона Жакоба и Моно. После всего этого объединение эмбриологии и генетики стало не только возможным, но и весьма плодотворным. Наиболее четко это проявилось в недавнем расцвете школ, которые были основаны в 30-х и 40-х годах Уоддингтоном (С. Н. Waddington) в Англии, Куртом Штерном (Curt Stern) в США и Эрнстом Хадорном (Ernst Hadorn) в Германии. Генетика развития как экспериментальная наука разрабатывалась подобно тому, как это происходило с механикой развития Вильгельма Ру, с той разницей, что скальпелем ей служили не нарушения процесса онтогенеза путем физических воздействий, а мутации. Заключительный абзац книги Хадорна «Генетика развития и летальные факторы», вышедшей в 1955 г., свидетельствует о том, что единение генетики и эмбриологии действительно произошло:
«В хромосомном веществе любого организма имеются постоянные места для многих тысяч функциональных единиц, или генов, способных мутировать. Любое изменение или утрата того или иного гена угрожает жизни развивающегося организма. Самым убедительным доказательством значения этих хромосомных факторов служит установление того, что утрата одного-единственного гена может полностью нарушить развитие, а то обстоятельство, что ни один из многих тысяч остальных генов не может принять на себя роль этого недостающего фактора, свидетельствует о высокой индивидуальности структуры и функции отдельного гена. Кроме того, процесс развития, очевидно, предъявляет огромные требования к гармоничному сотрудничеству многочисленных отдельных процессов, берущих начало в генетической субстанции хромосом».
Мы полагаем, что настало время совершить последний шаг в современном синтезе - слить воедино эмбриологию, генетику и эволюцию.