Глава восьмая Космология Глобализация реальности

Глава восьмая

Космология

Глобализация реальности

Он дал человеку речь, и речь породила мысль, которая есть мера Вселенной.[34]

Шелли

Великая идея: Вселенная расширяется

Науку часто считают самонадеянной в ее самоубийственной, в глазах некоторых (включая меня самого), претензии быть единственным путем к истинному, полному и совершенному знанию. Однако некоторые из ее величайших достижений обладают необычайной скромностью. Ни в чем ее достижение не является столь величественным, а эта униженная скромность столь уместно полной, как в ее роли при установлении места человека во Вселенной. Самонадеянность этого величайшего достижения заключается в уверенности, что наука способна ответить на величайший из всех вопросов: вопрос о происхождении Вселенной. Неизбежное и ироническое унижение заключается в том, что астрономическая и космологическая революция свела на нет уникальность положения человека. У Птолемея мы были в центре. Коперник немного спихнул нас на прекрасную, но тем не менее небольшую планету на орбите вокруг Солнца. С тех пор Солнце было выпихнуто на незначительное положение в незначительной галактике в незначительном скоплении галактик в том, что может оказаться незначительной Вселенной.

Эта глава является историей последовательного унижения, в котором наши научные исследования столкнули нас с предположительной претензии на центральное место более даже, чем в сторону, и умалили нашу значимость. Однако в то же самое время, когда мы прилагали усилия, чтобы осознать нашу незначимость, мы, малюсенькие существа с ничтожными мозгами, постигли расширение Вселенной, дали меру всему, что существует, определили то, что, по-видимому, является нашим истоком, и даже выяснили вероятное развертывание нашего космического будущего. Нам есть чем гордиться в пучине нашего неизменно возрастающего унижения.

В предыдущих главах мы смотрели вглубь; здесь мы глядим наружу. Раньше мы смотрели на чрезвычайно малое; здесь мы смотрим на чрезвычайно большое. Теперь мы смотрим в открытое пространство небес, видим, где расположена наша маленькая арена, и вопрошаем, что же могут поведать нам звезды.

Звезды не избежали внимания греков. Сначала, когда в те более темные, чем теперь, дни, они ночью поднимали глаза, они видели щит с проколотыми в нем дырками, через которые светит божественный свет блистающей внешней сферы. Это видение космоса стало несколько более изощренным, когда во мнении проницательного Евдокса из Книда (примерно, 408-355 до н.э.) щит уступил место двадцати семи концентрическим сферам. До сих пор спорят, считал ли Евдокс эти сферы просто вычислительным приемом или, подобно Аристотелю, который усовершенствовал эту модель и довел число сфер до волнующих пятидесяти четырех, реально существующими. С точки зрения Аристотеля или, по крайней мере, средневековых представлений о том, что он действительно написал, все эти сферы, за исключением наружной, были прозрачными; наружная была черной, с точками прикрепленных к ней светильников, и делала один оборот в день. Согласно Аристотелю, небесные тела, населяющие сферы, были сделаны из пятого элемента, квинтэссенции, не имеющего аналога на Земле. Мы можем здесь фыркнуть, но остерегитесь: квинтэссенция еще вернется в конце этого обсуждения. Оболочки находились почти, но не совсем, в достижимых пределах, поскольку их высоту было трудно измерить. Даже Иоганн Кеплер (1571-1630) думал, что все звезды лежат на твердой оболочке толщиной лишь в несколько километров.

Наше восприятие Вселенной стало расширяться, когда человек положил ее под выпуклую линзу и отразил в параболическом зеркале. Ко времени сэра Уильяма Гершеля (1738-1822), который начал свою карьеру гобоистом в оркестре ганноверской гвардейской пехоты, но, под покровительством другого ганноверца, Георга III, превратился в выдающегося астронома, она разрослась в жерновообразное скопление мириадов звезд, имеющее около шести тысяч световых лет в диаметре. Постигаемый диаметр рос с момента постройки Эйфелевой башни, не потому, что астрономы могли теперь подняться выше над землей и вознести свои головы ближе к небесам[35], а потому, что лифт в этой башне был построен неким Уильямом Хейли, который поэтому разбогател достаточно для того, чтобы оплачивать страсть своего сына Джорджа Хейли (1868-1938) к астрономии. Хейли-младший был первым директором Йеркской обсерватории университета Чикаго, названной в честь Чарльза Йеркса, безжалостного чикагского трамвайного магната, который, в надежде вернуть себе место в обществе после тюремного заключения за присвоение чужого имущества, позволил уговорить себя финансировать постройку крупнейшего для того времени телескопа-рефрактора (его линза составляла 1 метр в диаметре). В 1904 г. Хейли перебрался в обсерваторию Маунт Вильсон, непосредственно под Лос-Анджелесом. Он знал, что добавляя дюймы к зеркалам, он сможет проникать в космос на большее число световых лет. Сначала его отец помог оборудовать там 60-дюймовый (полутораметровый) телескоп-рефлектор; затем, при содействии другого бизнесмена, Джона Хукера в 1918 г. был построен 100-дюймовый телескоп, остававшийся крупнейшим в мире в течение тридцати лет.

В 1919 г. Хейли убедил присоединиться к нему Эдвина Пауэлла Хаббла (1889-1953), стипендиата Родса из Оксфорда, который изучал право, но стал уставать от предъявляемых учебой требований. Хаббл начал свою работу с определения расстояния до некоторых дымчатых скоплений звезд, туманностей, которые долго приводили в недоумение астрономов. Измерение расстояния до объектов — далеко не легкая задача. Когда Хаббл приступил к работе, существовал лишь один способ сделать это, состоявший в использовании техники, предложенной Генриеттой Левит (1868-1921), работавшей в Обсерватории Гарвардского колледжа. Она заметила корреляцию между яркостью определенного класса звезд, переменных цефеид, которые встречаются в рукавах спиральных галактик, и периодом их пульсаций. Яркость, которую астрономы измеряют на Земле, зависит от расстояния до звезды, чем больше расстояние, тем более тусклой выглядит звезда. Поэтому, регистрируя период переменной звезды, мы можем судить об ее абсолютной яркости, а измеряя видимую яркость, можем сделать вывод о расстоянии до нее. Заключение Хаббла оказалось поразительным: в то время как наша Галактика, Млечный Путь, имеет, как известно, диаметр около 25 тысяч световых лет, ближайшая из туманностей, туманность Андромеды, удалена от нас на 2 миллиона световых лет. Она должна была находиться вне нашей Галактики; она была другой галактикой!

Наша воспринимаемая Вселенная немедленно стала больше, чем считалось ранее, и дыба нашего унижения натянулась еще на одну засечку. Нам не только пришлось принять факт, что мы не находимся в центре нашей планетной системы и вытолкнуты к краю Млечного Пути, но теперь стало ясно что и наша Галактика не более чем одна из мириадов. Пришло время еще большего и более серьезного унижения.

Следующей задачей Хаббла было определить скорости, с которыми другие галактики приближаются к нам или удаляются от нас, и, таким образом, обнаружить динамику Вселенной. Похожа ли она, например, на газ, в котором острова галактик сгрудились почти случайно, или они просто подвешены на небе? Это движение уже фактически установил в 1912 г. Весто Слайфер (1875-1969), работавший в Обсерватории Лоуэлла в Аризоне. Он измерял смещение цвета галактик, вызываемое их движением, и к 1924 г. обнаружил, что тридцать шесть галактик из пятидесяти одной, обследованной им, удаляются от нас. Слайфер использовал эффект Допплера, изменение длины волны света, вызванное движением источника: движение к нам уменьшает воспринимаемую длину волны, придавая белому цвету синий оттенок; движение от нас увеличивает воспринимаемую длину волны, придавая белому цвету красный оттенок. Подобный же эффект имеет место и для звука: когда приближающийся к нам экипаж издает более высокий звук, чем экипаж от нас удаляющийся. Этот эффект возникает, потому что движение источника сближает гребни волны или раздвигает их (рис. 8.1). Чем больше скорость источника, тем больше смещение длины волны, поэтому относительную скорость можно определить, измеряя смещение. Если длина волны возрастает, давая так называемое красное смещение, то источник движется от наблюдателя. Свет большей части галактик демонстрирует красное смещение, поэтому они удаляются от нас.

Рис. 8.1. Эффект Допплера состоит в изменении длины волны излучения (будь то света или звука), принимаемого неподвижным наблюдателем от движущегося источника. На верхней диаграмме источник неподвижен и посылает излучение с заданной длиной волны. На средней диаграмме источник движется в направлении наблюдателя, и гребешки волн сближаются так, что наблюдатель принимает волны более короткой длины волны или более высокой частоты (смещение к синему или к более высоким нотам для звука). На нижней диаграмме источник удаляется от наблюдателя, движение растягивает волны, и наблюдатель принимает волны большей длины волны или более низкой частоты (смещение к красному или к более низким нотам для звука).

Хаббл пошел дальше. В 1923-29 гг. он пришел к удивительному заключению, что скорость удаления пропорциональна расстоянию от нас, чем дальше галактика, тем быстрее она от нас улетает. Это наблюдение теперь выражается в общем законе Вселеноой:

Скорость удаления = постоянная Хаббла ? расстояние от нас.

Постоянная Хаббла такова, что галактика на расстоянии 10 миллионов световых лет кажется удаляющейся от нас со скоростью 200 км в секунду, галактика на расстоянии 20 миллионов световых лет кажется удаляющейся от нас со скоростью 400 км в секунду, и так далее.

Хаббл сделал вывод, хотя даже забыл упомянуть о нем в первой работе, что Вселенная расширяется. Каждая галактика подобна точке, отмечающей положение на слое резины. Для дальнейших ссылок представим себе галактики в виде маленьких монет, наклеенных на поверхность резинового баллона: когда резина растягивается, монеты расходятся в стороны, но сами они не растягиваются (рис. 8.2). Следствие этого расширения ужасно, ибо если мы проследим его назад во времени, то должен настать момент, когда все монеты совпадут, а Вселенная превратится в единственную точку. То есть Вселенная, по-видимому, имела начало. Я ввел уклончивое слово «по-видимому», потому что в космологии ничего нельзя утверждать вполне прямо, особенно в криволинейном пространстве-времени, и позднее мне придется дополнить это умозаключение. Однако на данной стадии мы можем считать одним из следствий великой идеи о том, что Вселенная расширяется, утверждение, что был момент, когда все это началось. Это действительно захватывает дух и вызывает множество вопросов, некоторые из которых, например, как разворачивается Вселенная[36], мы исследуем в этой главе.

Рис. 8.2. Модель, показывающая, как мы можем представить себе расширяющуюся Вселенную. Монеты, приклеенные к поверхности сферы, представляют галактики. Когда Вселенная расширяется — что представлено расширением сферы, — галактики удаляются друг от друга, но сами не расширяются. В соответствии с этой моделью, наблюдатель, находящийся на любой монете, будет видеть, как другие монеты удаляются: из разбегания галактик не следует, что мы занимаем во Вселенной особое место.

Существует несколько аспектов нашего описания, которые мы должны отправить на отдых, некоторые теперь, некоторые позже. Где бы мы ни поместили наши телескопы, мы видим галактики, улетающие от нас по мере расширения Вселенной. Однако это не совсем верно, некоторые близкие галактики — одна из них туманность Андромеды — немного угрожающе движутся по направлению к нам. Это «локальное» движение является так называемым особым движением галактики (где «особое» означает скорее индивидуальное, чем необычное), движением относительно каркаса расширяющейся Вселенной. Мы можем представлять себе галактики блуждающими по пространству и отвечающими на притяжение друг друга. Для близких друг к другу галактик это движение может преодолевать космическое разлетание, так же как две монеты, скользящие по слою резины, могут съезжаться, несмотря даже на то, что резина растягивается.

Вторым аспектом является тот факт, что расширение, которое мы наблюдаем, как нам кажется, помещает нас снова в центр мира, поскольку все галактики удаляются от нас. Это неравноправие, однако, иллюзорно, так как, где бы в космосе мы ни находились, мы все равно видели бы разлетание прочь от нас. Аналогия монет, приклеенных к баллону, показывает, что происходит: на какой бы монете мы ни стояли, мы увидим, что соседние монеты удаляются от нас. Это наблюдение является сутью принципа, воплощающего политическую корректность, космологического принципа, который утверждает, что Вселенная выглядит одинаково, где бы ни находился наблюдатель. Смирение снова возвращается на свое место.

Перед тем как перейти к делу, коснемся одного технического момента. Хаббл был не вполне прав, думая, что он измерил скорость разбегания галактик. Мы можем интерпретировать красное смещение как эффект Допплера и, значит, как указание на скорость удаления галактик, только для объектов, которые близки к нам. Свет от очень удаленных объектов начал свой путь к нам давным-давно; Вселенная с тех пор расширилась, и волны света растянулись. Правильной интерпретацией красного смещения, пригодной как для близких, так и для очень удаленных галактик, является та, в которой оно есть мера изменения масштаба Вселенной за время, прошедшее от момента излучения света до момента его регистрации.

Так, если длина волны смещена к красному каким-либо фактором, то волна начала свое путешествие, когда Вселенная была намного меньше. Это необычайно, что, глядя в пространство, мы видим Вселенную такой, какой она была, когда ее масштаб был меньше чем теперь.

Если бы галактики двигались с постоянной скоростью, мы могли бы использовать постоянную Хаббла, чтобы вычислить, когда вся видимая Вселенная была одной точкой. Нам придется вернуться к этому позже, но здесь подходящий случай начать. На таком основании мы можем считать, что Вселенная возникла приблизительно 15 миллиардов лет назад. Событие, которое знаменует начало Вселенной, британский астроном Фред Хойл (1915-2001), выступая по радио в 1950 г., назвал Большим Взрывом. Хойл использовал этот термин пренебрежительно[37], поскольку он предпочитал свою собственную теорию устойчивого состояния Вселенной, в которой, по мере расширения Вселенной, в нее вбрасывается вещество, чтобы обеспечить сохранение его плотности. При известной скорости расширения Вселенной, которая принималась в теории устойчивого состояния, в каждом кубическом метре пространства каждые 10 миллиардов лет должны порождаться всего несколько атомов водорода, поэтому требования к тому, кто производит материю, не слишком обременительны. Конечно, мы можем даже представить себе напряжение натянувшегося пространства, порождающего атомы, поэтому рождение вещества не является абсурдным a priori; но сотворение частиц, очевидно, отвергает закон сохранения энергии, и поэтому это предположение дурно пахнет, несмотря на его благонамеренность.

Теория устойчивого состояния привлекала Хойла, поскольку позволяла избежать вопроса о том, что случилось в начале, ибо начала не было: Вселенная всегда была здесь и всегда расширялась. Она также позволяла избежать еще более головоломного вопроса о том, что происходило до того, как Вселенная появилась на свет. Однако возможность избегания вопросов не может быть оправданием для принятия какой-либо теории; разумеется, это лишь кажущееся упрощение, и еще неизвестно, что труднее: понять, почему Вселенная всегда была тут, или найти механизм ее возникновения. В целом для ученых причинно-следственная цепочка более приятна, чем воспоминания о вечности.

Модель устойчивого состояния Вселенной, независимо развитая Генрихом Бонди и Томасом Голдом в работах, опубликованных с 1948 по 1949 гг., теперь огромное большинство ученых не считает правдоподобной, и она, подобно самому Хойлу, почила в Бозе. Однако нам не следует слишком поспешно насмехаться над забракованной теорией: далее мы увидим, что современные представления вернулись к ее более изощренной версии, в которой целые вселенные вбрасываются в бытие даже чаще, чем теория устойчивого состояния требует того от малюсеньких атомов водорода.

В высшей степени впечатляющими являются обнаружение космического фонового излучения и его детальные свойства, которые мы вкратце опишем, фактически составляющие огромный корпус свидетельств говорящих в пользу модели Большого Взрыва. Некоторые космологи сегодня сомневаются, что Вселенная в раннем возрасте прошла через стадию, когда она была очень плотной и очень горячей. Но на самом деле с помощью необычайного сочетания теории, наблюдений и растягивания наших знаний об очень малом для объяснения очень большого, мы можем сегодня со значительной уверенностью проследить историю Вселенной назад во времени, вплоть до малейших долей первой секунды после ее рождения. Астрономическим наследием Хаббла является экспериментальное открытие расширения Вселенной; его интеллектуальное наследие, однако, гораздо значительнее, ибо оно включает в себя самое малое, осознание того факта, что такие карлики, как мы, могут проследить свою историю почти до начала времен. Это интеллектуальное наследие мы исследуем в оставшейся части этой главы и увидим, что научные идеи, рождающиеся в наших лилипутских лабораториях, способны объять космос.

Сверхострый интеллект может увидеть с первого взгляда, что Вселенная расширяется. В 1826 г. немецкий астроном Генрих Вильгельм Ольберс (1758-1840) видел вполглаза, что Вселенная расширяется, но не понял того, что увидел. Он опубликовал вопрос, известный теперь как парадокс Ольберса, несмотря на то, что проблема была известна с тех пор, как в 1610 г. Кеплер предлагал для нее решение. Ольберс указал на правоту тех, кто озадачен тем фактом, что на небе по ночам темно. Вы и я, с нашими необученными умами, можем думать, что ответ очевиден: Солнце зашло. Но Ольберс напомнил своим читателям, что если Вселенная бесконечна и вечна, то куда бы вы ни провели достаточно далеко в небо линию от вашего глаза, ее конец упрется в звезду. Поэтому небо ночью должно быть таким же ярким, как поверхность Солнца, так как оно по существу является сплошным листом Солнца, покрывающим небеса. Хотя наше солнце может зайти, мириады других солнц не заходят.

Существуют два возможных объяснения. Первое, более простое, заключается в том, что если Вселенная возникла конечное время назад, аргументы Ольберса неверны, поскольку свету от очень отдаленных звезд не хватило времени, чтобы долететь до нас. Поэтому, вместо того чтобы быть листом солнечного света, лист неба имеет щели, в которых звезды находятся слишком далеко для того, чтобы внести вклад в освещенность ночного неба.

Второе объяснение является более утонченным и еще больше уменьшает интенсивность света, который даже из конечной Вселенной должен, по нашим ожиданиям, достичь наших глаз. Когда мы смотрим вдаль, мы смотрим назад сквозь время, так как оно требуется для того, чтобы свет достиг до нас. Мы видим то, что было, когда свет отправился в путь, а не то, что происходит, когда свет достигает наших глаз. Даже чтение этой страницы уже является частью истории, поскольку вы видите ее такой, какой она была около одной миллиардной секунды назад (10?9 секунд, 1 наносекунда), а не такой, какой она является в этот момент. Большинство зрителей спортивных соревнований видят их так, как если бы они проходили в прошлом году, или, точнее, в прошлой микросекунде, не в тот самый момент, когда забивается гол, а примерно на микросекунду позже. Удаленные астрономические объекты излучили свет, который сейчас достигает нас, миллиарды лет назад, когда температура Вселенной была столь высокой, что все небо светилось с интенсивностью солнца. Глядя в это «далеко» и в это «давно», мы могли бы ожидать, подобно Ольберсу, что увидим небо, залитое светом. Но с тех пор Вселенная расширилась, и волны света, типичного для объектов, разогретых до 10 тысяч градусов (104 К), чрезвычайно растянулись. Вместо длин, измеряемых в нанометрах, при которых волны видимы, они приобрели длины, измеряемые в миллиметрах, и стали невидимыми. Эти волны теперь характеризуют гораздо более холодное тело с температурой около 3 градусов около абсолютного нуля (3 К). Ночное небо действительно светится чем-то, приближающимся по интенсивности к свечению поверхности звезды, но этот звездный свет является столь древним и растянутым, что мы воспринимаем небо темным.

Ученые натолкнулись на это объяснение, когда модель горячего Большого Взрыва утвердилась как теоретическая возможность. На основании этой модели также было предсказано, что температура Вселенной должна падать по мере ее расширения, поскольку длины волн излучения, заполняющего все пространство, растягиваются. В результате то, что когда-то было коротким, становится длинным, а плотность энергии во Вселенной падает. Температура оказывается обратно пропорциональной масштабу Вселенной, так что, когда Вселенная удваивается в размере, ее температура падает до половины предыдущей величины. Для обнаружения излучения, оставшегося от Большого Взрыва, были приложены значительные усилия, но всех опередили обучавшиеся в докторантуре Арно Пензиас (р. 1933) и Роберт Вильсон (р. 1936), которые занимались удалением голубиного помета с большой микроволновой антенны. Однако это не было единственным их занятием: они были радиоастрономами, принявшими в свое ведение эту антенну, ставшую ненужной, когда примитивная передающая система спутника Эхо была заменена на Телстар. Они надеялись использовать ее в интересах более фундаментальной радиоастрономии и поискать источник фонового шипения, докучавшего приему. После исключения всех наземных источников, для чего и требовалось соскоблить голубиный помет и повернуться спиной к Манхэттену, им оставалось лишь прийти к выводу, что излучение имеет космическое происхождение. Они наткнулись на останки огненного шара, его ослепительного излучения, растянувшегося до невидимых микроволн, его электрического грома, приглушенного до почти молчащего электронного шипения.

Подробное изучение микроволнового фонового излучения в последующие годы показало, что оно в точности такое, какое, по ожиданиям, излучало бы тело при температуре 2.728 градусов выше абсолютного нуля (то есть около минус 270 градусов Цельсия, рис. 8.3). С того момента, как было дозволено наше движение вокруг Солнца, движение Солнца вокруг центра нашей Галактики и общий дрейф нашей локальной группы галактик к Великому Аттрактору, это излучение остается одинаковым в любом направлении, куда ни бросишь взгляд. Оно однородно с точностью до одной стотысячной и имеет характеристики, которые отметают множество других предположений, делавшихся для объяснения его происхождения теми, для кого идея горячего Большого Взрыва отвратительна. Нет сомнения в том, что Вселенная когда-то была в высшей степени горячей и в высшей степени плотной.

Рис. 8.3. Интенсивность излучения, заполняющего пустое пространство, может быть измерена для каждой длины волны, и кружочки показывают полученные таким способом величины. Сплошная линия является интенсивностью, предсказываемой законом Планка для излучения черного тела (глава 7), если температура тела равна 2,728 К.

Теперь мы можем соединить вместе наблюдения и теорию и немного поразмышлять об истории мира. Мы знаем (из решения уравнений Эйнштейна, дающих математическое описание гравитационного поля в присутствии массивного тела, глава 9), как будет меняться масштаб Вселенной со временем в зависимости от сделанного предположения о том, как много вещества она содержит. Мы знаем из определения постоянной Хаббла современную скорость ее расширения и знаем, как температура Вселенной связана с ее масштабом. Откуда мы это знаем? Интенсивность излучения волн различной длины зависит от температуры (вспомним наше обсуждение излучения черного тела в главе 7, рис. 8.3), а длины волн при расширении Вселенной растягиваются, поэтому существует связь между температурой и масштабом. Комбинируя связь температуры с масштабом и изменение масштаба во времени, мы можем определить, как меняется со временем температура Вселенной.

Мы можем развернуть эту связь больше, поскольку знаем из наших лабораторных опытов, какие изменения вызывает температура. Мы знаем, как температура Вселенной, космического горнила, потом печки, а позднее и холодильника, менялась во времени, поэтому у нас есть средства для вывода заключений о том, как свойства Вселенной менялись вскоре после ее рождения. Вообще говоря, высокие температуры заставляют вещи разваливаться, и лишь частицы, которые крепко удерживаются вместе, имеют шанс выжить при них, а частицы, удерживаемые слабо, могут выжить лишь при низких температурах. Мы используем этот принцип в кухне, где жарка и варка помогают расщеплять вещества на более мелкие, более легко усваиваемые, более ароматные молекулы, а замораживание помогает хранить их, замедляя реакции, приводящие к разложению. Температура космоса выполняет похожую кулинарную функцию, но припасы, которые мы готовим в космической печи, есть содержимое самой материи.

«Вскоре после» в последнем параграфе является ни к чему не обязывающим оборотом, требующим расшифровки. Когда диаметр объема, в который была упакована современная наблюдаемая Вселенная, равен величине, называемой планковской длиной, несколько меньшей 200 миллиардно-триллионных метра (то есть 1,6?10?35 м, фундаментальная величина, с которой мы встретимся в главе 9), наша современная физика спотыкается. Для изучения событий, происходивших, когда Вселенная была столь компактной, нам нужна квантовая теория гравитации. Такая теория начинает возникать, но сегодня мы так мало уверены в ней, что я выделю эту квантово-палеолитическую эру из нашей истории и рассмотрю ее позже отдельно. Туннель, вырытый нами назад сквозь время, выходит из тумана неведения на планковском времени, около 5,4?10?44 с после рождения, когда температура принимала свою планковскую величину примерно 1,4?1032 градусов Это было около 15 миллиардов лет назад: не в пределах живой памяти, но и не так ужасно далеко, чтобы невозможно было себе представить. И это в самом деле совершенно замечательно, что так много всего произошло за такое короткое время. Мы не можем, как епископ Ашер с его дотошным анализом Библии, дать точную дату, вроде 23 октября 4004 г. до н.э., полдень, время завтрака[38], но точность нашего определения момента рождения возрастает по мере роста нашего понимания динамики эволюции Вселенной, и мы можем надеяться вскоре пришпилить его с точностью до миллиарда лет или большей.

Имеется еще одна характеристика начала, на которую нам надо обратить внимание. Часто спрашивают, где происходил Большой Взрыв? Ответ прост и точен (каким и бывает всегда хороший ответ): он происходил везде. Вселенная не взрывалась во что-то, и в той мере, в какой название Большой Взрыв создает впечатление взрыва, оно неудачно. Большой Взрыв заполнял все пространство: он происходил всюду. И нет необходимости, чтобы Вселенная когда-то была точкой. Если Вселенной предназначено расширяться вечно (без обратного схлопывания), то всегда вне любой заданной области находилась масса, большая, чем внутри нее, даже в момент творения. То есть если Вселенная «открыта» и должна расширяться вечно, она всегда уже была бесконечной. Поэтому, даже если видимая Вселенная, Вселенная, с которой мы взаимодействуем — которая простирается на 15 миллиардов световых лет от нас во всех направлениях и свет которой сотворен на таком расстоянии, чтобы ему как раз хватило времени достичь нас сегодня, — была когда-то спрессована в бесконечно малую точку, мир все же был бесконечной областью вне этой точки. Только если Вселенная «замкнута», то есть подвергнется Большому Хлопку в некотором отдаленном времени в будущем — событие, представляющееся все более маловероятным по мере накопления свидетельств, связанных со скоростью расширения, — было бы правильным представлять себе всю Вселенную первоначально упакованной в одной точке.

Нам также необходимо понять, как описывать расширение Вселенной. В дальнейшем я буду говорить не о размере Вселенной, которая, по-видимому, бесконечна во все времена, и не о размере видимой Вселенной, который соответствует радиусу около 15 миллиардов световых лет, но раньше был меньше, а о ее масштабе. Под этим «масштабом» я имею в виду множитель, связанный с расстоянием между двумя точками, которые сегодня отделяет друг от друга 1 метр. Так, при масштабе 100, эти точки будет разделять 100 метров, когда масштаб был одна миллиардная (10?9), две точки были разделены расстоянием в одну миллиардную метра (10?9 м). Эйнштейновские уравнения гравитационного поля можно использовать для расчета зависимости масштабного множителя от времени в разных моделях Вселенной. Первые достаточно реалистические решения были получены русским математиком, авиатором, испытателем воздушных шаров и метеорологом Александром Александровичем Фридманом (1888-1925), который предложил их незадолго до своей смерти от тифа. Они известны, как модели Фридмана (рис. 8.4). Похожие решения были найдены бельгийским духовным лицом, аббатом Жоржем Леметром (1894-1966) в 1925 г.; он был первым, кто проследил их назад во времени и обнаружил то, что назвал «космическим яйцом», а мы теперь называем Большим Взрывом.

Рис. 8.4. История фридмановской Вселенной. Если плотность Вселенной меньше определенной величины, то она «открыта» и расширяется вечно. Если плотность Вселенной больше этой величины, то она «замкнута» и после начальной фазы расширения сожмется обратно к Большому Хлопку. Если плотность Вселенной в точности равна критической, она будет расширяться вечно, но постепенно останавливаться при времени, приближающемся к бесконечности. Современные измерения заставляют предположить, что Вселенная не является замкнутой. Имеются новые наблюдаемые свидетельства в пользу предположения о том, что Вселенная открыта и, может быть, недавно вошла в фазу ускорения.

На сегодняшний день космологи верят, что Вселенная является ни открытой и ни замкнутой, она является «плоской». Плоская Вселенная похожа на открытую Вселенную по характеру расширения, и ее масштаб будет растягиваться всегда, но ее расширение постепенно замедляется и становится бесконечно медленным, когда масштаб приближается к бесконечности. В плоской Вселенной, как и в открытой Вселенной, не существует предела для удаления друг от друга двух точек, разделенных сегодня одним метром. Следствием плоскости, так же как и открытости, является то, что Вселенная всегда имела бесконечную протяженность, и поэтому Большой Взрыв происходил всюду в бесконечном объеме пространства. Когда люди говорят, что Вселенная была изначально очень маленькой, они имеют в виду — им следует иметь в виду, — что масштаб был изначально крайне малым и что две точки, разделенные теперь расстоянием в 1 метр, были разделены тогда мельчайшей долей метра. При том огромном количестве вещества, которое было спрессовано в крошечном пространстве, вы можете представить себе, какова была его плотность; фактически оно было примерно в 1097 раз более плотным, чем вода. И оно было таким плотным везде, везде в бесконечном объеме Вселенной было, всегда было и всегда будет, ужасно много.

И последней подготовительной деталью, иногда мешающей пониманию, является то, что, несмотря на возрастание масштаба Вселенной со временем, объекты, которые она содержит, не становятся больше. Мы сами и наши измерительные палочки со временем не расширяемся, как и расстояния между звездами внутри Галактики. Есть несколько способов понять это, иногда ставящее в тупик, явление. Простейшим является принятие той точки зрения, что описывающие расширение решения Фридмана основаны на модели, в которой вещество берется усредненным по всей Вселенной, а галактики представлены просто точками, указывающими положение в пространстве. Увеличение масштаба относится только к этой «усредненной Вселенной» и умалчивает о поведении крошечных систем, населяющих пространство. Другим способом прийти к тому же заключению является замечание, что если две точки, такие как две звезды в галактике, связаны вместе силами притяжения, то растяжение масштаба не превозмогает эти силы, и точки остаются на том же самом расстоянии друг от друга, как бы долго мы ни ожидали.

Более утонченный пуристский способ понимания этого мудреного, но важного обстоятельства состоит в том, что решения Фридмана говорят нам о том, как две точки будут двигаться друг от друга, при условии, что они двигались друг от друга изначально. Это немного похоже на уравнения движения Ньютона, которые говорят нам, как вычислить положение летящего мяча, если мы знаем, как быстро он летел первоначально. Если мяч покоился, то, как бы долго мы ни ожидали, он будет оставаться на том же месте. Подобным же образом, если две точки в пространстве — ваша голова и пятки — не двигались врозь изначально, то, как бы долго мы ни ожидали, они будут оставаться в том же относительном положении. Расширение Вселенной растягивает нас не в большей мере, чем мяч, покоящийся в классической физике, двигается к другому месту.

С учетом этих замечаний, настало время подойти к истокам нашей истории. На планковском времени предполагается, что все силы, удерживающие вещество вместе (гравитационное, электрослабое и сильное взаимодействия, обсуждавшиеся в главе 6), имели одинаковый уровень, но когда Вселенная охладилась ниже планковской температуры, гравитационные силы отделились от двух других. Две оставшиеся по-прежнему имели одинаковый уровень и передавались безмассовыми бозонами. Потом века не происходило ничего существенного. Более точно, электрослабое и сильное взаимодействия сохраняли одинаковые уровни в течение 10 миллиардов тиканий (планковских времен), произведенных планковскими часами, до момента, который мы назвали бы одной миллиардно-триллионно-триллионной секунды (10?33 с) после Взрыва. Использование тиканья наших собственных тяжеловесных часов тут неуместно, так как наши часы спроектированы для удобства людей, и тиканье часов в столичных холлах не приспособлено для обсуждения событий в очень молодой, очень горячей и очень плотной Вселенной. Начальное расширение Вселенной, если измерять его в естественных единицах, планковских тиканьях, было чрезвычайно медленным — как переползание плесени, принявшей снотворное; с этой точки зрения легко понять, как много изменений может произойти за время, которое мы, тяжеловесные, летаргические гиганты назвали бы одним морганием.

По прошествии этого огромного времени (10 миллиардов планковских тиканий, которые вы и я назвали бы одной миллиардно-триллионно-триллионной секунды) температура упала достаточно низко для того, чтобы сильные взаимодействия отделились от электрослабых, так что с этого времени в еще более холодной Вселенной они выглядят несвязанными. И снова события во Вселенной, казалось, замерли. Вселенная расширялась, и ее температура падала, но нам придется ждать почти вечность — чтобы быть точным, пока планковские часы не протикают 1030 раз, — пока хоть что-то заметное случится в этом необычайно ленивом мире. Вы можете поддаться искушению представлять себе это ожидание как еще одно моргание, как одну десяти-триллионную секунды (10?13 с), но это даст вам неправильное представление об ужасной медлительности событий в ранней Вселенной, и вы можете удивляться, как вообще что-нибудь успело произойти. К этому времени масштаб Вселенной расширился до огромного размера в 1015 планковских длин. Конечно, будучи измерен в единицах, больше подходящих для последующих эпох, он кажется нам очень маленьким, ведь точки, которые сегодня стал разделять один метр, тогда разделяло только 10?20 м, но мерки фермерского двора не приложимы здесь совершенно и лишь сбивают с толку. Вселенная охладилась до 10 тысяч триллионов градусов (1016 К), температуры, достаточно низкой для того, чтобы скалярные частицы (возможно, бозоны Хиггса) приклеились к W- и Z-бозонам, наделив их массой и тем самым ограничив их радиус действия и сделав слабое взаимодействие отличным от электромагнитного на все оставшееся время. Вселенная теперь так холодна, что взаимодействия приобрели самостоятельные индивидуальности и стали различными навсегда.

Еще не существует ничего, что мы могли бы идентифицировать как вещество: температура еще чудовищно высока, и термическое движение растаскивает все, что может начать слипаться под влиянием сил. Первыми формами вещества, кристаллизующимися из этого ада, когда его температура падает, являются нуклоны (протоны и нейтроны), образующиеся, когда кварки стягиваются вместе сильным взаимодействием. Это слипание может произойти только, когда температура упала до чрезвычайно холодных 10 триллионов градусов (1013 К). Холодно? Ну, это очень холодно в планковской шкале, поскольку составляет только 10?19 планковских градусов выше абсолютного нуля. Это чрезвычайно горячо, конечно, в повседневной шкале температур, но эта шкала введена для сообщений о нашей земной погоде, и ни в малейшей степени не является фундаментальной.

Теперь я ослаблю мое настойчивое стремление рассуждать в терминах фундаментальных единиц и обращусь к меркам фермерского двора, так как на этой стадии эволюции Вселенной они являются много более удобными, чем планковские естественные единицы. Однако вам следует иметь в виду, что моргание на самом деле является в условных единицах эпохой почти неизмеримой длительности. То, что кажется нам мимолетным, может быть цепочкой бесчисленных событий в естественных, фундаментальных единицах. Полет пули со скоростью звука на расстояние ширины атомного ядра длится почти вечность, сто триллионов триллионов (1026) планковских тиканий.

Через секунду после начала, стряхнув с себя вещество, от него отделились нейтрино. Никогда больше они не будут заметно взаимодействовать с ним, и с этого момента будут летать по Вселенной почти беспрепятственно, свободно несясь в пространстве и проницая планеты, как если бы они были почти прозрачными кристаллическими сферами. Если бы у нас были глаза для созерцания нейтрино, почти безмассовых частиц со спином и ароматом, мы видели бы мир почти пустым, наполненным здесь и там лишь призрачными тенями.

С первого взгляда мы можем ожидать, что нейтринное небо будет ярче фотонного, поскольку в нейтрино сохранился отпечаток Вселенной в форме ее температуры в момент их первичного отделения, и продолжающееся расширение Вселенной охладило их меньше. Но, на самом деле, фоновые нейтрино холоднее, чем фоновые микроволны: их температура немного ниже 2 градусов над абсолютным нулем. Причиной большей прохладности нейтринного неба является то, что различные события, особенно столкновения электронов с их античастицами позитронами, увеличили число фотонов и повысили яркость, а значит, и температуру микроволнового неба. Через три минуты после начала температура упала до 1 миллиарда градусов. Было так холодно (только 10?23 планковских градусов), что в этих арктических условиях даже нуклоны смогли склеиться вместе, образуя дейтерий (тяжелый водород с ядром, состоящим из нейтрона, склеенного с протоном) и гелий (два протона и два нейтрона, склеенных вместе). Вычисления показывают, что, когда температура продолжала падать, эта эпоха Вселенной произвела 23 процента гелия, 77 процентов остаточного водорода (неприсоединенные протоны) и намеки на более тяжелые элементы (литий и бериллий, например, с тремя протонами и четырьмя протонами соответственно и несколькими нейтронами, прицепленными к ним и помогающими удерживать протоны вместе). Распространенность гелия критическим образом зависит от числа типов нейтрино и несовместимо с любым числом, большим четырех. Как мы видели в главе 6, существуют три известных аромата нейтрино, что удовлетворяет этому ограничению. Но гораздо более важно то, что мы видим, какими масштабными — в данном случае это распространенность гелия во Вселенной — являются следствия идей, происходящих в результате изучения очень малого. Эта взаимная совместимость знаний, происходящих из изучения огромного и мельчайшего, вдохновляет на еще большее доверие к достижениям науки.

Снова веками не происходит ничего существенного. Даже по меркам фермерского двора состав Вселенной остается почти неизменным сто тысяч лет. Все это время Вселенная продолжает расширяться и охлаждаться, но она остается плазмой, роем ядер, купающихся в море электронов. В этом состоянии Вселенная ослепительно ярка, но непрозрачна, подобно Солнцу, которое мы видим сегодня, так как свет может путешествовать через такую среду лишь на малые расстояния. По той же причине шар Солнца не является прозрачным для нас. Фотону приходится проделывать из центра Солнца утомительное путешествие в 10 миллионов лет, чтобы вызваться на свободу на его поверхности. Каждую долю секунды он поглощается и излучается вновь, путешествуя то туда, то сюда. Только когда свет вырывается из этого болота плазмы и выходит в пустое пространство, он буйно улетает прочь со скоростью света. Если бы центральная часть Солнца сегодня погибла, ее свет ковылял бы еще 10 миллионов лет. Во многом похожие условия преобладали в ранней Вселенной, где свет медленно продвигался сквозь непроницаемую, сверкающую плазму.

Через сто тысяч лет расширения, небеса внезапно прояснились, как бывает в облачный летний день: Вселенная стала прозрачной, и свет свободно проходил через нее. Но немногое можно было увидеть в ясных небесах; на самом деле и видеть было нечего, ведь звезды еще не образовались. Но это был решающий момент нашей истории. При очищении небес арктический холод возрос до рубежа в десять тысяч градусов (104 К), и в столь морозных условиях электроны смогли наконец воссоединиться с ядрами. Плазма сконденсировалась в нейтральные атомы, электроны, ранее свободные, были теперь захвачены и больше не могли столь эффективно рассеивать излучение, и свет стал свободно проходить через пустоту.

Электромагнитное излучение — свет, — освобожденное от своей привязанности к веществу, становится теперь ослепительно жарким, с температурой 10 тысяч градусов, не слишком отличаясь от сегодняшней поверхности Солнца, и все вокруг нас погружено в иссушающий блеск. Все является фотосферой; посланник Кеплера Ольберс был бы доволен, ведь это источник его ночи без тьмы. По мере расширения Вселенной этот свет растянулся в микроволновой фон, окружающий нас сегодня. Как мы уже видели, наше современное небо все еще остается пылающим огненным горнилом, но его температура упала до 2,7 градуса выше абсолютного нуля. Космическое фоновое излучение имеет максимум в микроволновой области: оно невидимо для нас, если мы не усилим наши глаза радиотелескопами и не услышим легкое шипение волн, задевающих наши детекторы.

Наконец, во Вселенной есть атомы. Их не особенно много, и их разнообразие едва ли велико. Если бы мы собрали все современное вещество и размазали его по всей Вселенной, мы обнаружили бы только около одного атома водорода в каждом кубическом метре. Единственными элементам», пришедшими из этой промежуточной эры Большого Взрыва, являются водород (много), гелий (много, но меньше, чем водорода) и относительно слабо разбрызганные литий и бериллий. Вселенная в трехминутном возрасте является невероятно пустынным и примитивным местом.

Так все и оставалось миллиард лет. Однако Вселенная обладала потенциалом необычайного разнообразия, и этот потенциал медленно начинал разворачиваться. По причинам, к которым нам следует не забыть вернуться, первобытная Вселенная не была абсолютно гладкой. В некоторых местах первобытный газ из атомов водорода, атомов гелия и таинственной «темной материи» Вселенной, к которой мы вернемся позже, был немного плотнее, чем в других местах: существовала легкая рябь в его распределении. По мере взросления Вселенной, газ в более плотных областях под влиянием гравитации начал конденсироваться. Когда эти локальные шаровидные области сформировались и газ в них стал сжиматься, они разогрелись. Потом они стали такими горячими, что ядра атомов водорода сталкивались с такими силами, что сплавлялись вместе, освобождая энергию. Начался нуклеосинтез, стали светить звезды, и в мир ворвались скопления звезд, которые мы называем галактиками. Распределение галактик далеко от случайного, поскольку они отмечают более плотные области ряби: существуют сгущения и огромные пустоты протяженностью в сотни миллионов световых лет (рис. 8.5).

Рис. 8.5. Распределение галактик, наблюдаемое с Земли. Каждая точка представляет положение одной галактики. Заметим, что распределение неоднородно: существуют длинные волокна галактик и огромные области с числом галактик ниже среднего. Эти неоднородности являются колоссально увеличенными остатками флуктуаций плотности первичной Вселенной.

Этот огромный узор является увеличением ряби, сопровождавшей начало Вселенной, когда вариации плотности имели масштаб в нескольких планковских длин, но были растянуты до современных гигантских размеров. Вселенной хватило 15 миллиардов лет, чтобы достичь такой стадии, но этот период, относительно короткий в нелепых человеческих единицах (ибо какое имеет значение, сколько раз наша маленькая планета обернулась вокруг нашей маленькой звезды), имеет огромную временную протяженность на фундаментальных планковских часах, занявшую не меньше чем 1061 тиканий (рис. 8.6).