Использование рыбами электрических полей
Использование рыбами электрических полей
Электрическая локация
Еще Дарвину было известно, что некоторые рыбы имеют небольшие электрические органы. Разряды, излучаемые ими, настолько слабы, что казались естествоиспытателям совершенно бесполезными. Эти органы считались псевдоэлектрическими, рудиментарными. Однако в 1958 г. Лиссман показал, что рыбы с «рудиментарными» электрическими органами используют свои слабые электрические поля для локации и взаимосвязи. Исследуя слабоэлектрических рыб, Лиссман обнаружил две характерные особенности их поведения. Первая заключается в том, что при плавании такие рыбы стремятся поддерживать неизменным положение горизонтальной оси тела (передвигаются они, как правило, за счет ундулирующих, т. е. колебательных, волнообразных движений спинного плавника). Вторая особенность — четкая локация помещенных в воду рядом с рыбами различных предметов.
Особенно детально Лиссман изучил поведение гимнарха. Плавая, гимнарх никогда не ударяется ни о препятствия на своем пути, пи о стенки аквариума. Интересен способ, каким гимнарх исследует незнакомые объекты. Он поворачивается к нему хвостом и его кончиком как бы ощупывает его на расстоянии с разных сторон. Как известно, в хвосте у гимнарха находится электрический орган, который генерирует импульсы частотой 300 Гц. Лиссман предположил, что именно этот орган участвует в локации.
Выше говорилось о боковой линии — специализированной системе локации объектов, которым обладают рыбы. Однако, используя ее, рыба не может обнаружить неподвижные объекты, если она не движется и не создает потоки воды. Не может она также различать объекты, геометрически идентичные по форме и размеру, но отличающиеся по электрическим свойствам. Между тем опыты на гимнархе показали, что слабоэлектрические рыбы обладают такими способностями.
Эти опыты заключались в следующем. Рыб, длина одной из которых составляла 52 см, а другой — 54 см, помещали в большой аквариум, оборудованный специальной установкой (рис. 16). Для сравнения использовали геометрически идентичные цилиндрические сосуды длиной 15 см, с внутренней емкостью 80 см3. Их электропроводность изменяли, помещая внутрь электролиты и диэлектрики. (Сосуды были изготовлены из материала с электропроводностью, близкой электропроводности воды)
За каждым сосудом на тонкой проволоке, связанной с регистрирующим устройством, подвешивали кусочки пищи. Когда гимнарх захватывал пищу, проволочка натягивалась, благодаря чему прикрепленное к ее концу записывающее острие перемещалось, и на вращающемся барабане фиксировался подход рыбы к соответствующему объекту. У рыб вырабатывали условный рефлекс, «поощряя» пищей за правильный выбор и «наказывая» ударом палочки за неправильный.
В первой серии опытов рыбы быстро научились отличать сосуды с более высокой электропроводностью (с аквариумной водой) от сосудов с диэлектрическими свойствами (с парафином, воздухом и дистиллированной водой).
Во второй серии опытов исследовали способность рыб различать геометрически и оптически идентичные сосуды с различной электропроводностью. В специальных опытах выяснялась возможность различения рыбами электрически одинаковых сосудов с различными реактивами. Было установлено, что гимнарх различает геометрически и оптически одинаковые сосуды с разной электропроводностью, но не может отличить сосуды, содержащие разные химические вещества.
Определялась также степень чувствительности гимнарха к объектам с разной электропроводностью. Оказалось, что гимнарх не может различать геометрически идентичные объекты, имеющие одинаковую электропроводность, но различную внутреннюю структуру. Наименьший объект, электрически отличимый гимнархом от воды, представлял собой стеклянную трубочку диаметром 0,2 см.
Рис. 16. Установка дли выработки у слабоэлектрических рыб условных рефлексов на объекты одинаковых размеров
1 — сосуды с различной электропроводностью, 2 — кусочки пищи, 3 — регистрирующее устройство
Таким образом, было установлено, что при локации различных объектов гимнарх использует электрический орган. Каков же механизм электрической локации у рыб?
В 1950 г. К. Коэтс высказал предположение, что электрический угорь использует радиолокационный прием. Как известно, принцип действия радиолокаторов основан на измерении времени, истекшего между моментами посылки электромагнитного импульса и возвращения эхо-сигнала, отраженного от препятствия (объекта локации). Зная скорость распространения электромагнитных волн (300 тыс. км/с)[7], можно приблизительно вычислить расстояние до обнаруженного объекта. По мнению Коэтса, и угорь каким-то образом ощущает время между посылкой импульса и возвращением эхо-сигнала.
Несостоятельность этой гипотезы очевидна с точки зрения как физики, так и физиологии. Рыбы генерируют разряды электрического тока, который не отражается от предметов. Конечно, некоторое количество энергии разряда уходит на образование электромагнитных волн. Однако в воде они затухают с увеличением расстояния. Кроме того, невозможно представить, чтобы рыба могла «измерить» промежуток времени между посылкой и приемом импульса. Так, если объект обнаруживается на расстоянии 1 м, то сигнал должен пройти 1 м до объекта и столько же обратно, т. е. 2 м. Нетрудно подсчитать, что время прохождения такого расстояния электромагнитной волной составит одну пятнадцатимиллионную секунды. Такие ничтожные промежутки времени живые существа различать не могут.
Иную гипотезу о механизме электрической локации рыб выдвинул Лиссман, тщательно изучавший ориентацию гимнарха. Он обнаружил, что рыба создает вокруг себя характерное электрическое поле дипольного типа. Если в воде нет никаких объектов, диполь симметричен. Его конфигурация зависит и от электропроводности воды и от искажений, которые возникают, если в электрическом поле находятся объекты, отличающиеся по своей электропроводности от воды. При этом объекты с электропроводностью большей, чем у воды, сгущают вокруг себя электрическое поле, а объекты с меньшей электропроводностью рассредоточивают его (рис. 17). Изменения конфигурации поля влечет за собой соответствующие сдвиги в распределении электрических потенциалов по поверхности тела рыбы. Рыба воспринимает их с помощью электрических рецепторов, расположенных в области головы, благодаря чему определяет местонахождение объекта.
Специальные опыты показали, что у гимнарха (гимнотуса, гнатонемуса и мормируса) чувствительность к внешним электрическим полям значительно выше, чем у других рыб. Гимнарх способен воспринимать внешнее электрическое поле напряженностью в сотые доли микровольта на сантиметр. Именно этим объясняются описанные выше результаты опытов с гимнархом по определению геометрически идентичных объектов с различной электропроводностью.
Таким образом, гимнарх производит локацию объектов с помощью особого электрического механизма. Чтобы проверить эффективность его работы, Лиссман поставил модельный эксперимент в аквариуме. С помощью двух неподвижно закрепленных электродов, на которые от генератора подавались импульсы, аналогичные импульсам гимнарха, в воде создавалось электрическое поле дипольного типа. К осциллографу подключались 25 воспринимающих электродов, расположенных по форме тела гимнарха. Когда в смоделированное дипольное поле гимнарха вносили различные объекты, потенциалы на воспринимающих электродах значительно изменялись.
Рис. 17. Распределение силовых линий в электрической поле гимнарха под влиянием объекта со свойствами диэлектриков (а) в проводника (б)
Оказалось, что подобным методом вполне возможно «лоцировать» крупные разнообразные объекты на небольшом расстоянии. Добиться такой же точной локации мелких объектов, какая наблюдается у гимнарха, не удалось. Однако эта способность гимнарха связана с деятельностью тонких механизмов рецепции и, в частности, с тем, что он может выделять полезные электрические сигналы из шума.
Модельные опыты показали, что незначительные перемещения воспринимающих электродов в пространстве существенно влияют на изменения потенциалов. Этим объясняется своеобразный способ плавания всех слабоэлектрических рыб — они стремятся сохранять положение оси своего тела неизменным, чтобы иметь возможность осуществлять локацию.
В последнее время экспериментально установлено, что электрическую локацию, сходную с локацией гимнарха, использует большинство видов гимнотовидных и мормирообразных, в том числе и электрический угорь.
Некоторые предварительные данные говорят о том, что подобная форма ориентации в пространстве присуща и другим рыбам: обыкновенным скатам, морской миноге, а также некоторым неэлектрическим рыбам, имеющим электрорецепторы,— осетровым, сомовым.
Описанный механизм электрической локации может быть смоделирован и использован в технике в практических целях, например для отыскания под водой металлических предметов, для регистрации рыб, проходящих через рыбопропускные сооружения, и т. д.
Электрические поля — средство общения рыб
С помощью электрических полей рыбы могут обмениваться различной информацией. В настоящее время значение таких полей в общении рыб экспериментально установлено лишь для некоторых из них. Электрические сигналы можно разделить на сигналы опознавания пищевых объектов, групповые, агрессивно-оборонительные, межполовые опознавательные и стайные, с помощью которых рыбы собираются вместе.
Рассмотрим каждую из этих групп сигналов в отдельности.
Сигналы опознавания пищевых объектов. Многие виды рыб имеют электрорецепторы с высокой чувствительностью, благодаря чему могут использовать биоэлектрические разряды других рыб. Известно, например, что акулы, отыскивая пищу, воспринимают различные сигналы, воспроизводимые их жертвами. Они реагируют на низкочастотные колебания, создаваемые рыбами, и на выделяемые ими химические вещества. Однако большинство исследователей отмечают, что акул привлекают какие-то сигналы, испускаемые их жертвами во время рывков и бросков при испуге (так называемая эманация страха). Характерно, что именно эти движения рыб сопровождаются наиболее сильными биоэлектрическими разрядами. В связи с этим возникло предположение, что акулы и скаты (близкие родственники), обладающие высокой чувствительностью к внешним электрическим полям, могут различать на некотором расстоянии движущихся рыб по их биопотенциалам.
С целью проверки этой гипотезы были проведены специальные опыты с морской лисицей и камбалой. Ската помещали в один аквариум, а камбалу — в другой. Аквариумы были химически, акустически и оптически изолированы друг от друга. Между ними осуществлялась только электрическая связь. В аквариуме с камбалой находились воспринимающие электроды, соединенные через усилитель с воспроизводящими электродами, размещенными в аквариуме с морской лисицей. В процессе опытов снималась электрокардиограмма морской лисицы.
Было обнаружено, что, если камбала находилась на расстоянии 10—15 см от приемных электродов, величина ее биопотенциалов оказывалась достаточной для возбуждения ската.
Способность скатов воспринимать биопотенциалы других рыб подтвердили также опыты, в которых с помощью магнитофона воспроизводилась предварительная запись биопотенциалов камбалы. Эти опыты проводились в крупных бассейнах с морской водой диаметром 1,8 м по условнорефлекторной методике. Посредством двух электродов, помещенных в грунт на дне бассейна, в воде генерировалось модельное биопотенциальное поле камбалы. Скат свободно передвигался в бассейне, и каждый раз, когда он проплывал над электродами, ему бросали кусок мяса. Приблизительно после 50 таких «тренировок» у животных обычно вырабатывался условный рефлекс. Скаты плавали над электродами, и при включении модельного поля камбалы устремлялись к участку грунта, где помещались электроды.
Таким образом, акулы и скаты могут использовать биопотенциальные разряды рыб, которые составляют их пищу, для отыскания корма. По-видимому, такой же способностью обладают и некоторые другие рыбы, имеющие электрорецепторы: американский сомик, отдельные представители осетровых и хищные слабоэлектрические рыбы.
Групповые сигналы впервые были обнаружены у электрического угря Коэтсом. Было замечено, что некоторые разряды одного угря привлекают к нему других рыб. Это явление подтвердилось наблюдениями в природных условиях. С целью выяснения информационной роли разрядов угря проводились опыты как с искусственными, так и с естественными разрядами.
Опыты по выяснению действия на угрей искусственных разрядов, сходных с разрядами угря, проводились в бассейне размерами 4,1 X 1,2 X 0,3 м. Регистрирующие электроды устанавливались с одной стороны бассейна по его длине, а стимулирующие — посредине бассейна. Расстояние между электродами составляло 60 см. Разряды изменялись по частоте следования, напряжению и длительности импульсов. Реакции оценивали по приближению угря к стимулирующим электродам, ответным разрядам, а также по ориентировочным реакциям: кусанию и толканию электродов.
Было установлено, что при излучении разрядов угорь возбуждается, посылает ответные разряды и подходит к стимулирующим электродам. Наиболее активно угорь реагировал на разряды, состоящие из импульсов длительностью 5 мс и частотой следования 100 импульсов в секунду при напряженности поля от 1,5 до 0,25 В на 1 см. На разряды большей и меньшей напряженности реакция снижалась. Частота следования импульсов тоже оказывала влияние на реакцию угрей: она ослабевала при частоте следования импульсов меньше 10 и больше 200 импульсов в секунду. Разряды «угреподобного» типа привлекали угрей, и рыбы сопровождали перемещаемые по водоему стимулирующие электроды.
Опыты с естественными разрядами угря проводились по методу, условно названному «актеры—зрители», в двух вариантах. В первом варианте и «актера» (угря, генерирующего разряды), и «зрителей» (угрей, воспринимающих разряды) помещали в одном бассейне. «Актер» находился в сетчатом садке, и его электрическую деятельность периодически стимулировали прикосновением стеклянной палочки к телу. Разряды угря контролировали с помощью воспринимающих электродов и регистрирующей аппаратуры. При каждом разряде «актера» остальные угри возбуждались (на расстоянии не далее 7 м) и подплывали к нему.
Однако так как в этом варианте опытов все угри находились в одном бассейне, они могли пользоваться не только электрическими каналами связи. Чтобы исключить вероятность связи иными способами, во втором варианте опытов «актера» и «зрителей» помещали отдельно, в двух аквариумах, между которыми сохранялась только электрическая связь. Разряды «актера» по проводам передавались на электроды, находившиеся в аквариуме с угрями-«зрителями». Опыты показали, что и в этом случае отмечается эффект привлечения угрей, особенно голодных, к электродам. Подходящие к электродам угри как бы исследовали излучаемые разряды и сами начинали их генерировать. Эффект привлечения наблюдался на расстоянии от электродов не более 7 м.
Таким образом, можно сделать вывод, что разряды с высокой частотой следования импульсов (в среднем 100 импульсов в секунду) являются сигналами привлечения угрей друг к другу. Основываясь на экспериментальных данных (угри привлекаются только на охотничьи сигналы, и при входе в зону действия электрического поля они тоже начинают активно их генерировать), можно предполагать, что разряды, привлекающие угрей, имеют значение сигналов о местонахождении пищи.
Групповые сигналы есть не только у гимнотовидных, к которым относится угорь, но и у рыб других отрядов, например у мормирообразных. Для определения сигнального значения импульсов у этих рыб Лиссман поставил следующие опыты. Ученый использовал аквариум, разделенный на два отсека перегородкой из двух слоев марли, исключавшей оптический контакт между рыбами. В один из них помещали одну рыбу, а спустя некоторое время во второй — другую. Наблюдения показали, что в дневное время обе рыбы лежали на дне аквариума неподвижно, но их импульсация была в определенных пределах синхронна. Если к одной рыбе прикасались стеклянной палочкой и ее импульсация увеличивалась, то же происходило с другой рыбой.
В ночное время при слабом освещении можно было видеть, что обе рыбы всплывают и начинают плавать вдоль перегородок, явно ощущая присутствие друг друга. Разряды рыб при этом значительно усиливались. Эти наблюдения с несомненностью свидетельствуют о том, что свои импульсы рыбы используют и как сигналы группового общения.
Агрессивно-оборонительные сигналы характерны для рыб, у которых четко выражена внутривидовая иерархия а также у территориальных одиночных или парных рыб, в частности у гимнарха. Гимнарх — территориальная рыба: перед размножением он строит гнездо из плавающих растений, куда откладывает крупную (до 1 см в диаметре) икру. Гнездо находится в середине его территории. Самец охраняет гнездо во время инкубационного периода (3—4 дня), в течение которого он очень агрессивен к особям своего вида. Благодаря высокой чувствительности к электрическим сигналам он обнаруживает своих «конкурентов» на значительных расстояниях. Для доказательства этого были проведены специальные опыты.
В бассейн, где находился гимнарх, помещали несколько пар электродов, на которые подавали записанные на магнитофоне электрические импульсы гимнархов (напряжение на электродах достигало 3 В). Таким образом, в воде моделировалось электрическое поле гимнарха. Опыты показали, что гимнарх атакует излучающие электроды. Кроме того, было установлено, что при изменении частоты импульсов в широком диапазоне (т. е. они значительно отличаются от характерных импульсов для гимнарха) агрессивная реакция на электроды у рыбы сохраняется. По-видимому, гимнарх использует электрические сигналы не только во внутривидовых, но и в межвидовых отношениях.
Столь же четко выражены сигналы, используемые в агрессивных отношениях, и у мормирообразных. Это также связано с их территориальностью. Если поместить двух рыб в один аквариум, частота их разрядов сразу же увеличивается, затем они нападают друг на друга, пытаясь откусить хвостовой стебель. Именно в этой части тела и расположены их электрические органы.
Исследователи, наблюдавшие аналогичное поведение мормирообразных в природных условиях, пришли к выводу, что они применяют электрические разряды для охраны своей территории. Установлено, что рыбы-соперники по характеру разрядов определяют силу противника. При сильном разряде одной рыбы электрическая деятельность другой обычно подавляется.
Наибольшую роль агрессивно-оборонительные сигналы играют в связи с внутривидовой иерархией. В этом отношении характерно поведение гимнотуса, обитающего в реках Южной Америки.
Эта ночная территориальная рыба, достигающая 60 см в длину, имеет четко выраженную иерархическую организацию. Территория каждой особи, на которой она питается, занимает площадь около 0,4 м2, эти участки находятся на расстоянии не менее 3 м друг от друга. Несмотря на это, гимнотусы при сближении до 2 м обмениваются электрическими сигналами.
Выделено четыре типа агрессивно-оборонительных сигналов, сопровождаемых соответствующими позами. Разряд постоянной относительно высокой частоты следования импульсов (100—500 в 1 с) расшифровывается воспринявшей его особью как сигнал о наличии соперника и вызывает атаку при его приближении на расстояние не более 20 см. Подобные разряды рыбы этого вида используют также для локации.
Разряд, генерируемый вблизи соперника, воспринимается как сигнал «поддержания атаки». При этом рыбы располагаются боком друг к другу так, что хвост одной находится у головы другой и создаваемые ими поля направлены в область тела с наибольшей концентрацией электрорецепторов. Таким образом достигается наибольшее обоюдное стимулирующее воздействие.
Разряд, прекращающийся на короткий период (менее чем на 1,5 с), а затем возобновляющийся с новой силой,— сигнал, предшествующий броску на соперника. Разряд, прерывающийся на 1,5 с и более,— сигнал, приостанавливающий сражение. Его обычно генерирует более слабая рыба, которая как бы просит пощады. Описанные сигналы были изучены в лабораторных и природных условиях.
Таким образом, электрические рыбы широко используют агрессивно-оборонительные электрические сигналы. Следует отметить, что и неэлектрические рыбы — цихлидовые, макроподы, щуки, окуни, угри и т. д.— сопровождают агрессивно-оборонительные отношения характерной разрядной деятельностью.
Межполовые опознавательные сигналы. Некоторые факты говорят об использовании рыбами электрической сигнализации для различения особей противоположного пола. Так, черноморский звездочет в период размножения генерирует характерные разряды. Их напряжение и длительность увеличиваются у самок по мере созревания гонад, достигая максимума в последних стадиях зрелости; у самцов напряжение разрядов в это время становится минимальным, а длительность — максимальной.
Еще более четко различаются межполовые опознавательные сигналы у шиповатого ската: у самок их напряжение максимально весной и летом (в период нереста), а у самцов — летом и осенью. При этом характер разрядов и самок, и самцов меняется по мере полового созревания рыб.
Биоэлектрические поля стаи рыб. Стайное поведение рыб изучали многие исследователи. Одни вскрывали механизм этого явления, другие пытались понять биологическое назначение стаи в жизни рыб. Однако многие вопросы стайного поведения еще не ясны. Например, какой механизм обусловливает целостность стаи при очень быстрых поворотах? В естественных условиях стаи бывают настолько велики, что объяснить их одновременные повороты зрительной передачей информации невозможно Это нельзя объяснить и звуковой сигнализацией, так как сигналов такого типа у стайных рыб нет.
Сотрудники лаборатории ориентации рыб Института эволюционной морфологии и экологии животных им А. Н. Северцова Академии наук СССР предположили, что биоэлектрические поля используются в стайном поведении. Однако напряженность полей, создаваемых разрядами неэлектрических рыб, незначительна (для большинства видов она составляет около 10 мкВ на 1 см на расстоянии 5—10 см от рыбы) Такие поля неэлектрические рыбы не воспринимают. Если это так, то имеют ли их биоэлектрические поля биологическое значение, или они представляют собой только побочный результат деятельности мышц и нервов?
Интересные данные получены в опытах по выяснению зависимости амплитуды и длительности биоэлектрических разрядов, образующих поля, от количества рыб. Вначале опыты проводились со стайкой тетрагоноптерусов (длина рыбы 5—7 см) в аквариуме размером 11 x 35 x 40 см. Разряды регистрировались с помощью двух пар электродов и шлейфового осциллографа. В аквариум последовательно подсаживали 40 рыб. Чтобы рыбы совершали маневры в стае (одновременные повороты), их пугали резко движущейся тенью. Запись разрядов производилась в диапазоне частот 50—1000 Гц.
Полученные данные показали, что с увеличением количества рыб в стае амплитуда разрядов возрастала, но незначительно[8], а длительность значительно: если у одной-двух особей сигнал длился 6—12 мс, то в стае из 40 рыб 150—280 мс. В опытах на молоди угря по мере увеличения количества рыб от 1 до 80 амплитуда электрических разрядов возрастала в 14 раз.
В дальнейшем опыты по суммированию биоэлектрических полей в стае проводили в естественных условиях на гольянах и дальневосточных гольцах. Было подтверждено, что с увеличением количества рыб в стае амплитуда и длительность разрядов возрастают. Именно поэтому разряды стаи рыб удается записать на значительно большем расстоянии, чем разряды одной особи: если разряды одного гольяна можно зарегистрировать на расстоянии до 30—40 см, а гольца — до 1 м, то разряды стаи гольянов из 100 особей фиксируют на расстоянии до 2,5 м, а стаи гольцов — до 3,5 м Естественно, что величина амплитуды суммированных электрических полей зависит не только от количества рыб в стае, но и от активности и синхронности генерирования ими разрядов.
В 1967 г. биоэлектрическое поле стаи атеринок было зарегистрировано на расстоянии 12—15 м. Стая состояла примерно из 500—600 особей, в поперечнике равнялась 2,5 м и двигалась относительно монолитно.
Суммированное биоэлектрическое поле стаи имеет напряженность, соответствующую чувствительности рыб. Повышению чувствительности рыб к полю стаи способствует также длительное непрерывное воздействие на них импульсов суммированного разряда.
Эти данные послужили основанием для гипотезы об использовании рыбами биоэлектрического поля стаи в целях ориентации. Предполагается, что стая с помощью своего биоэлектрического поля осуществляет электролокацию, а также и ориентируется в пространстве благодаря изменению параметров поля при его взаимодействии с магнитным полем Земли. Существование биоэлектрического поля стаи позволяет объяснить ее мгновенные повороты и целостность. Величина напряженности поля стаи, по-видимому, несет рыбам информацию о количестве составляющих ее особей.
В связи с образованием вокруг стай рыб биоэлектрического поля ученых заинтересовала возможность электропеленгации рыб и использования ее в практических целях. Электрические разряды рыб регистрируют двумя способами: по напряжению и току. Электрического угря и ската можно по потенциалам разрядов обнаружить на расстоянии 10 м, африканского слоника — 2 м, а неэлектрических рыб — вьюна и ставриду — 20—30 см; по силе тока рыб можно обнаружить на расстоянии, большем примерно в 5—10 раз. На современном уровне развития техники электропеленгация одиночных промысловых рыб невозможна, за исключением крупных рыб, например осетров, лососей, сомов, создающих биоэлектрические поля большой напряженности. Однако вполне реальна электропеленгация больших стай рыб с высокой напряженностью их электрических полей.
Электрическая навигация
Мысль о возможности ориентации животных по магнитному полю Земли высказал еще в 1855 г. Миддендорф. Имеются данные о чувствительности к магнитному полю Земли насекомых, улиток, водорослей[9]. Говоря о возможности использования рыбами магнитного поля Земли для целей навигации, естественно поставить вопрос, а могут ли они вообще воспринимать это поле.
На магнитное поле Земли в принципе могут реагировать как специализированные, так и неспециализированные системы. В настоящее время не доказано, что у рыб имеются чувствительные к этому полю специализированные рецепторы.
Как воспринимают магнитное поле Земли неспециализированные системы? Более 40 лет назад было высказано предположение, что основой таких механизмов могут быть токи индукции, возникающие в теле рыб при их движении в магнитном поле Земли. Одни исследователи считали, что рыбы во время миграций используют электрические индукционные токи, возникающие в результате движения (течения) воды в магнитном поле Земли. Другие полагали, что некоторые глубоководные рыбы используют индукционные токи, возникающие в их теле при движении.
Рассчитано, что при скорости движения рыбы 1 см в секунду на 1 см длины тела устанавливается разность потенциалов около 0,2—0,5 мкВ. Многие электрические рыбы, обладающие специальными электрорецепторами, воспринимают напряженность электрических полей еще меньшей величины (0,1—0,01 мкВ на 1 см). Таким образом, в принципе они могут ориентироваться на магнитное поле Земли при активном перемещении или пассивном сносе (дрейфе) в потоках воды.
Анализируя график пороговой чувствительности гимнарха, советский ученый А. Р. Сакаян сделал вывод, что эта рыба чувствует количество протекающего в ее теле электричества, и высказал предположение о способности слабоэлектрических рыб определять направление своего пути по магнитному полю Земли.
Сакаян рассматривает рыбу как замкнутый электрический контур. При движении рыбы в магнитном поле Земли по ее телу в результате индукции в вертикальном направлении проходит электрический ток. Количество электричества в теле рыбы при ее перемещении зависит только от взаимного расположения в пространстве направления пути и линии горизонтальной составляющей магнитного поля Земли. Следовательно, если рыба реагирует на количество электричества, протекающего через ее тело, она может определить свой путь и его направление в магнитном поле Земли.
Таким образом, хотя вопрос об электронавигационном механизме слабоэлектрических рыб еще окончательно не выяснен, принципиальная возможность использования ими токов индукции не вызывает сомнений.
Электрические рыбы в значительном большинстве — «оседлые», немигрантные формы. У мигрантных неэлектрических видов рыб (тресковые, сельдевые и др.) электрических рецепторов и высокой чувствительности к электрическим полям не обнаружено: обычно она не превышает 10 мВ на 1 см, что в 20 000 раз ниже напряженности электрических полей, обусловленных индукцией. Исключением являются неэлектрические рыбы (акулы, скаты и др.), имеющие особые электрорецепторы. При движении со скоростью 1 м/с они могут воспринимать индуцированное электрическое поле напряженностью 0,2 мкВ на 1 см. Электрические рыбы чувствительнее неэлектрических к электрическим полям примерно в 10 000 раз. Это говорит о том, что неэлектрические виды рыб не могут ориентироваться на магнитное поле Земли, используя токи индукции. Остановимся на возможности использования рыбами биоэлектрических полей при миграциях.
Практически все типично мигрирующие рыбы — стайные виды (сельдевые, тресковые и др.). Исключение составляет только угорь, но, переходя в мигрантное состояние, он претерпевает сложный метаморфоз, что, возможно, сказывается на генерируемых электрических полях.
В период миграции рыбы образуют плотные организованные стаи, движущиеся в определенном направлении. Небольшие косячки этих же рыб не могут определить направление миграции.
Почему же рыбы мигрируют в стаях? Некоторые исследователи объясняют это тем, что по законам гидродинамики движение рыб в стаях определенной конфигурации облегчается. Однако существует и другая сторона этого явления. Как уже говорилось, в возбужденных стайках рыб биоэлектрические поля отдельных особей суммируются. В зависимости от количества рыб, степени их возбуждения и синхронности излучения общее электрическое поле может значительно превышать объемные размеры самой стаи. В подобных случаях напряжение, приходящееся на одну рыбу, может достигать такой величины, что она способна воспринимать электрическое поле стаи даже при отсутствии электрорецепторов. Следовательно, рыбы могут использовать электрическое поле стаи в целях навигации благодаря его взаимодействию с магнитным полем Земли.
А как ориентируются в океане нестайные рыбы-мигранты — угри и тихоокеанские лососи, совершающие длительные миграции? Европейский угорь, например, становясь половозрелым, направляется из рек в Балтийское море, затем в Северное море, попадает в Гольфстрим, движется в нем против течения, пересекает Атлантический океан и приходит в Саргассово море, где он размножается на большой глубине. Следовательно, угорь не может ориентироваться ни по Солнцу, ни по звездам (по ним ориентируются во время миграций птицы). Естественно возникает предположение, что, так как большую часть своего пути угорь проходит, находясь в Гольфстриме, он использует для ориентации течение.
Попробуем представить, как ориентируется угорь, находясь внутри многокилометровой толщи движущейся воды (химическая ориентация в этом случае исключается)[10]. В толще воды, все струйки которой перемещаются параллельно (подобные потоки называются ламинарными), угорь движется в одном направлении с водой. В этих условиях его боковая линия — орган, позволяющий воспринимать локальные потоки воды и поля давления,— работать не может. Точно так же, плывя по реке, человек не ощущает ее течения, если не смотрит на берег.
Может быть, морское течение не играет никакой роли в механизме ориентации угря и его миграционные пути случайно совпадают с Гольфстримом? Если так, то какие же сигналы окружающей среды использует угорь, чем он руководствуется при ориентации?
Остается предположить, что угорь и тихоокеанский лосось используют в своем ориентационном механизме магнитное поле Земли. Однако специализированных систем для его восприятия у рыб не обнаружено. Но о ходе опытов по выяснению чувствительности рыб к магнитным полям оказалось, что и угри, и тихоокеанские лососи обладают исключительно высокой чувствительностью к электрическим токам в воде, направленным перпендикулярно оси их тела. Так, чувствительность тихоокеанских лососей к плотности тока составляет 0,15*10-2 мкА на 1 см2, а угря — 0,167*10-2 на 1 см2.
Была высказана мысль об использовании угрем и тихоокеанскими лососями геоэлектрических токов, создаваемых в воде океана течениями. Вода — проводник, движущийся в магнитном поле Земли. Возникающая в результате индукции электродвижущая сила прямо пропорциональна напряженности магнитного поля Земли в данной точке океана и определенной скорости течения.
Группа американских ученых на трассе движения угря провела инструментальные замеры и расчеты величин возникающих геоэлектрических токов. Выяснилось, что плотности геоэлектрических токов составляют 0,0175 мкА на 1 см2, т. е. почти в 10 раз выше чувствительности к ним рыб-мигрантов. Последующие опыты подтвердили, что угри и тихоокеанские лососи избирательно относятся к токам с подобной плотностью. Стало очевидно, что угорь и тихоокеанские лососи могут использовать для своей ориентации при миграциях в океане магнитное поло Земли и морские течения благодаря восприятию геоэлектрических токов.
Советский ученый А. Т. Миронов предположил, что при ориентации рыбы используют теллурические токи, впервые обнаруженные им в 1934 г. Механизм возникновения этих токов Миронов объясняет геофизическими процессами. Академик В. В. Шулейкин связывает их с электромагнитными полями в космосе.
В настоящее время работами сотрудников Института земного магнетизма и распространения радиоволн в ионосфере АН СССР установлено, что постоянная составляющая полей, образуемых теллурическими токами, не превышает напряженности 1 мкВ на 1 м.
Советский ученый И. И. Рокитянский предположил, что, поскольку теллурические поля являются индукционными полями с разными амплитудами, периодами и направлениями векторов, рыбы стремятся уходить в места, где величина теллурических токов меньше. Если это предположение правильно, то в период магнитных бурь, когда напряженность теллурических полей достигает десятков — сотен микровольт на метр, рыбы должны уходить от берегов и с мелких мест, а следовательно, и с промысловых банок в глубоководные районы, где величина теллурических полей меньше. Изучение взаимосвязи поведения рыб с магнитной активностью позволит подойти к разработке способов прогнозирования их промысловых скоплений в определенных районах. Сотрудники Института земного магнетизма и распространения радиоволн в ионосфере и Института эволюционной морфологии и экологии животных АН СССР провели работу, в которой при сопоставлении уловов норвежской сельди с магнитными бурями была выявлена определенная корреляция. Однако все это требует экспериментальной проверки.
Как уже говорилось выше, у рыб существуют шесть систем сигнализации. А не пользуются ли они еще каким-нибудь чувством, пока не известным?
В США в газете «Новости электроники» за 1965 и 1966 гг. было опубликовано сообщение об открытии У. Минто особых «гидронических» сигналов новой природы, используемых рыбами для связи и локации; причем у некоторых рыб они регистрировались на большом расстоянии (у макрели до 914 м). Подчеркивалось, что «гидроническое» излучение нельзя объяснить электрическими полями, радиоволнами, звуковыми сигналами или другими ранее известными явлениями: гидронические волны распространяются только в воде, их частота колеблется от долей герца до десятков мегагерц.
Сообщалось, что сигналы были открыты при исследовании звуков, издаваемых рыбами. Среди них выделены частотно-модулированные, используемые для локации, и амплитудно-модулированные, излучаемые большинством рыб и предназначенные для связи. Первые напоминают короткий свист, или «чириканье», а вторые — «щебетанье».
У. Минто и Дж. Хадсон сообщили, что гидроническое излучение свойственно практически всем видам, но особенно сильно эта способность развита у хищников, рыб со слаборазвитыми глазами и у охотящихся ночью. Ориентационные сигналы (сигналы локации) рыбы испускают в новой обстановке или при исследовании незнакомых объектов. Сигналы связи наблюдаются в группе особей после возвращения рыбы, побывавшей в незнакомой обстановке.
Что же побудило Минто и Хадсона считать «гидронические» сигналы проявлением не известного ранее физического явления? По их мнению, эти сигналы не акустические, потому что их можно воспринимать непосредственно на электроды. В то же время «гидронические» сигналы нельзя отнести и к электромагнитным колебаниям, по мнению Минто и Хадсона, так как в отличие от обычных электрических они состоят из импульсов, не имеющих постоянного характера и длящихся несколько миллисекунд.
Однако с такими взглядами трудно согласиться. У электрических и неэлектрических рыб сигналы очень разнообразны по форме, амплитуде, частоте и длительности, в связи с чем такие же свойства «гидронических» сигналов не говорят об их особой природе.
Последняя «необычная» особенность «гидронических» сигналов — их распространение на расстояние 1000 м — также может быть объяснена на основании известных положений физики. Минто и Хадсон не проводили лабораторных экспериментов на одной особи (данные таких опытов свидетельствуют, что сигналы отдельных неэлектрических рыб распространяются на небольшие расстояния). Они регистрировали сигналы от косяков и стай рыб в морских условиях. Но, как уже говорилось, в подобных условиях может суммироваться напряженность биоэлектрических полей рыб, и единое электрическое пола стаи удается уловить на значительном расстоянии.
На основании изложенного выше можно сделать вывод, что в работах Минто и Хадсона необходимо различать две стороны: фактическую, из которой следует, что неэлектрические виды рыб способны генерировать электрические сигналы, и «теоретическую» — бездоказательное утверждение, что эти разряды имеют особую, так называемую гидроническую природу.
В 1968 г. советский ученый Г. А. Остроумов, не вдаваясь в биологические механизмы генерации и приема электромагнитных сигналов морскими животными, а исходя из фундаментальных положений физики, произвел теоретические расчеты, которые привели его к заключению, что Минто и его последователи ошибаются, приписывая особую физическую природу «гидроническим» сигналам. В сущности, это обычные электромагнитные процессы.