1.3. Принципы конфокальной микроскопии
Конфокальная микроскопия является разновидностью флуоресцентной микроскопии с улучшенным разрешением вдоль оптической оси объектива, которое достигается за счет использования принципа конфокальной фильтрации флуоресценции. Концепция конфокальной микроскопии была предложена Marvin Minsky в 50-е гг. XX в. для исследования ткани головного мозга без предварительного окрашивания. В разработанном им микроскопе свет последовательно фокусировался на разных точках образца. С целью устранения шумового сигнала от участков, расположенных вне плоскости фокуса, использовалась диафрагма. Она находилась в плоскости, сопряженной с плоскостью фокуса объектива, таким образом, что при проецировании диафрагмы на объект ее изображение точно совпало с фокусом освещающего объект света. При таком устройстве системы свет из областей вне фокуса задерживался диафрагмой и на детектор попадал только сигнал из фокуса объектива. Изменяя диаметр диафрагмы, можно было варьировать толщину оптического слоя вблизи фокуса объектива, от которого измерялся сигнал. Сканирование плоскости образца по точкам позволяло получить полное изображение. Исходя из этого принципа, возникло и название метода – «конфокальный» – основанный на сопряжении фокусов. Однако при таком устройстве микроскопа на изображении было слишком много помех из-за использования слабых источников освещения. Вероятно поэтому изобретение Minsky осталось почти без внимания. Интерес к нему вернулся только после изобретения лазера. Более подробно исторические аспекты создания конфокального микроскопа приведены в обзоре Н. Н. Лукашевой [и др.] (2008).
В современном конфокальном микроскопе источником возбуждающего света является лазер. Преимуществом лазеров по сравнению с ламповыми источниками света заключается в монохроматичности генерируемого света и малой расходимости светового пучка. Монохроматичность возбуждающего флуоресценцию света дает возможность расширить спектральный диапазон регистрируемой флуоресценции и улучшить подавление светорассеяния на длине волны возбуждения. Малая расходимость пучка света способствует более эффективной работе оптической системы микроскопа, уменьшает число бликов, связанных с отклонением света от расчетного оптического пути, улучшает точность фокусировки пучка света и уменьшает объем, в который можно сфокусировать свет на образце. На рис. 2 показана принципиальная схема современного лазерного конфокального микроскопа.
Лазер излучает свет, формируя узкий световой пучок. Затем свет проходит через систему линз (расширитель пучка) и попадает на светоделитель, который отражает возбуждающий свет, направляя его на систему зеркал (на схеме не показана), позволяющих изменять направление луча во взаимно перпендикулярных плоскостях. Светоделитель обеспечивает высокоэффективное отражение света на длине волны генерации лазера и почти стопроцентное пропускание света в остальном спектральном диапазоне. Далее свет через объектив фокусируется в определенной точке образца, возбуждая флуоресценцию. При этом лазерный луч может возбуждать флуоресценцию во всех слоях образца, через которые он проходит, а интенсивность флуоресценции будет возрастать по мере приближения к точке фокусировки. Флуоресцентное излучение собирается объективом и возвращается на светоделитель, проходит сквозь него, попадая на эмиссионные фильтры. Отраженное излучение лазера через светоделитель не проходит. При необходимости многоканальной регистрации (например, при использовании нескольких флуорохромов) возможно дополнительное деление флуоресцентного сигнала на составляющие с помощью дополнительных светоделителей и фильтров эмиссии. Собранный из определенной точки образца свет фокусируется в плоскости конфокальной диафрагмы (pinhole), попадает на детектор (ФЭУ) и оцифровывается. При этом свет, исходящий из областей, находящихся выше или ниже плоскости фокуса, отсекается диафрагмой и на детектор не попадает. После регистрации флуоресцентного сигнала от первой точки фокусировки при помощи системы зеркал луч возбуждающего света перемещается на следующую точку в образце. Весь процесс повторяется. Так, точка за точкой, формируется изображение в горизонтальной (или вертикальной) плоскости.
Рис. 2. Принципиальная схема простейшего конфокального микроскопа
Диаметр конфокальной диафрагмы можно варьировать, тем самым изменяя толщину оптического слоя, от которого регистрируется сигнал. Однако следует понимать, что уменьшение диаметра конфокальной диафрагмы (а, следовательно, и уменьшение толщины оптического слоя) приводит к снижению интенсивности света, который диафрагма пропускает к детектору и, соответственно ухудшению детекции объектов с неяркой флуоресценцией. В связи с этим приходится искать компромисс между разрешением по оси z, зависящим от размера конфокальной диафрагмы, и возможностью регистрации четких флуоресцирующих объектов, что зависит как от размера диафрагмы, так и от степени усиления регистрируемого сигнала.
Помимо диаметра конфокальной диафрагмы толщина оптического слоя зависит от длины волны возбуждающего света, числовой апертуры объектива, показателя преломления иммерсионной среды. В частности, чем больше числовая апертура объектива, тем меньше толщина оптического слоя.
Не менее важным параметром является разрешающая способность микроскопа. Вследствие дифракции света увеличенное изображение объекта может оказаться размытым (две или более точек объекта воспринимаются глазом как одна). Еще в XIX в. Джон Рэлей сформулировал принцип, в соответствии с которым предельное разрешение микроскопа не может быть больше половины длины волны освещающего объект света. Предел разрешения объектива микроскопа (lmin) был уточнен немецким физиком Г. Гельмгольцем:
l min = 0,61?/n sin ?,
где ? —длина волны света; n – показатель преломления иммерсионной среды; ? —апертурный угол (максимальный угол, который образуют лучи, попадающие в объектив, с оптической осью системы).
Выражение NА = n sin ? называют числовой апертурой.
Согласно формуле Гельмгольца, разрешение объектива микроскопа зависит от длины волны облучающего света и пропорционально числовой апертуре. Повысить разрешение также можно с помощью увеличения коэффициента преломления иммерсионной среды. Поскольку невозможно неограниченно уменьшать длину волны облучающего света и увеличивать числовую апертуру объектива, существует разрешающий предел – около 200 нм. Однако есть возможность улучшить качество изображения за счет увеличения контраста. Если установить диаметр конфокальной диафрагмы равным диаметру центрального пятна дифракционной картины точечного объекта (диску Эйри), то можно избежать попадания в объектив света от дифракционных колец. Применяя такую технологию, можно повысить контрастность примерно в 1,4 раза по сравнению с обычными микроскопами, а это приведет к заметному улучшению качества изображения. Аксиальное разрешение конфокального микроскопа также зависит от диаметра диафрагмы. Чем меньше диаметр диафрагмы, тем меньше толщина слоя, с которого снимается сигнал, следовательно, лучше аксиальное разрешение (свет из соседних точек, находящихся вне фокальной плоскости, задерживается диафрагмой). Величина конфокальной диафрагмы, равная размеру диска Эйри, рассчитывается программой, управляющей конфокальным микроскопом, для каждого сочетания объектива и используемых фильтров (1 Airyunit). Она легко может быть задана без дополнительных вычислений.
С более подробным описанием принципиальной схемы конфокального микроскопа и порядком работы его модулей можно ознакомиться в работах Э. И. Лежнева [и др.] (2001), Г. И. Штейна (2007); R. Y. Tsien [et al.] (2006); B. J. Nair [et al.] (2012).
Как указывалось выше, в конфокальной лазерной микроскопии изображение всего образца получают путем сканирования. Скорость поточечного сканирования ограничивает скорость работы микроскопа в целом и делает невозможным наблюдение за быстротекущими процессами. Чтобы избежать этого ограничения, на практике используют не одиночную диафрагму, а массив диафрагм и детекторов. Такие массивы размещают на диске Нипкова. Это устройство, изобретенное Паулем Нипковым в 1884 г., представляет собой вращающийся диск из непрозрачного материала с нанесенными на нем отверстиями одинакового диаметра, расположенными по спирали в один оборот, начиная от наружного края диска. Наблюдая объект через сектор быстро вращающегося диска Нипкова, можно заметить, что происходит его построчное сканирование. При более высокой скорости вращения объект можно увидеть целиком (Феофанов А. В., 2007).
Современный аналог диска Нипкова содержит 20 тыс. отверстий, на которых лазерный луч фокусируется при помощи дополнительного диска с микролинзами. При вращении такого двойного диска достигается считывание до 360 кадров в секунду. Однако стоит отметить, что диаметры отверстий и расстояния между ними на диске фиксированы и подбираются для конкретного объектива, следовательно, смена последнего требует замены диска.
Сегодня на смену вращающимся дискам Нипкова приходят их твердотельные неподвижные аналоги – цифровые микрозеркальные устройства (digital micromirror device, DMD). Эти устройства представляют собой массивы микрозеркал, которые соответствуют пикселям в проецируемом изображении и, отклоняясь в ту или другую сторону, управляют прохождением света. В конфокальной микроскопии они играют роль массива отверстий, фильтрующих возвращаемый образцом сигнал, с изменяемым диаметром и схемой расстановки.
Однако конфокальные микроскопы имеют и существенные недостатки. Так, возбуждение значительной части существующих флуорохромов осуществляется лазерным излучением ультрафиолетового или коротковолнового видимого диапазона, что разрушительно для живых клеток. Эта проблема была преодолена с введением в практику мультифотонных микроскопов, в которых в качестве подсветки используется излучение инфракрасного диапазона.
Данный текст является ознакомительным фрагментом.