2.3 Первичный бульон
2.3.1 Синтез аминокислот. Для образования важнейших биополимеров – белков и нуклеиновых кислот – первичный бульон должен содержать по крайней мере 20 аминокислот, 5 азотистых оснований (аденин, гуанин, цитозин, тимин и урацил), 2 сахара (рибозу и дезоксирибозу). В опытах Миллера и Юри из всех перечисленных компонентов было синтезировано только 4 аминокислоты. Причём в бульоне их оказалось всего 2% (если учитывать только L-формы, см. далее), хотя концентрации газов в смеси были неестественно высокими, а количество энергии, пропущенной через данную смесь, эквивалентно периоду в 50 млн лет пребывания на древней Земле (Фолсом, 1982). На сегодняшний день не было продемонстрировано ни одного эксперимента, в котором удалось бы получить все 20 природных аминокислот. Интересно, что в опытах в наибольших количествах синтезируются аминокислоты, не входящие в состав белков, например ?-аланин и саркозин; под действием искрового разряда легко синтезируются все 7 изомеров аминокислоты с общей формулой С4H9NO2, однако ни одна из них не является компонентом белковых молекул (Майр, 1981). В связи с этим возник вопрос, почему в состав живого вошли те аминокислоты, которые труднее всего получить путём абиогенного синтеза?
2.3.2 Синтез азотистых оснований. Схожие проблемы возникают и с синтезом азотистых оснований. Например, аденин можно получить из цианистого водорода (HCN) – побочного продукта опытов Миллера и Юри – при облучении электронами полученного от линейного ускорителя газовой смеси, состоявшей из метана, аммиака и воды. Однако при чрезвычайно высоких концентрациях HCN (порядка 0,01 М) выход аденина составляет, по некоторым оценкам, всего 0,04%, причём ни в одной реакции не удалось получить чистый аденин, а лишь его производные (Ferris, 1978; Shapiro, 1995). Другое основание – цитозин при искровом разряде не образуется, а образуются только его предшественники: цианоацетилен и цианоацетальдегид. Однако если в растворе присутствуют, к примеру, аминокислоты, то они охотнее будут реагировать с ними, чем образовывать цитозин. Следовательно, прежде чем начнут накапливаться предшественники нуклеиновых кислот, исчезнут предшественники белков и другие важные соединения. (Кроме этого цианоацетилен с большим «удовольствием» прореагирует с аммиаком и циановодородом, которые в больших количествах присутствуют в колбах Миллера-Юри). Под действием УФ-излучения цитозин быстро разрушается с образованием фотогидратов и фотодимеров циклобутана (Shapiro, 1999). Выделить из конечных продуктов экспериментов, моделирующих первичную атмосферу, другие пурины, кроме аденина, не удалось. Не увенчались успехом и попытки обнаружения пиримидинов (Поннамперума, 1977; Orgel, 2004; Spirin, 2007).
2.3.3 Синтез сахаров. Что касается сахаров, то в опытах, аналогичных таковым Миллера и Юри, не удалось обнаружить даже намёков на их образование (Поннамперума, 1977). Однако был найден формальдегид, потому в качестве возможного способа получения сахаров, в частности рибозы, была предложена реакция конденсации формальдегида. Эта знаменитая реакция Бутлерова (синтез сахаров в слабощелочных водных растворах в присутствии ионов металлов) очень сложная и практически не предсказуемая. Каждый раз получаются самые разные сахара. На практике при непомерно высокой концентрации формальдегида – 0,15 М и выше, выход рибозы составляет менее 1% (Shapiro, 1988). Причём немедленно начинаются побочные реакции с другими сахарами. Из них образуется либо карамель, либо метиловый спирт и мочевина (Мухин, 2009).
Под действием УФ-лучей большая часть формальдегида превращается в пентаэритрит (Schwartz, 1993). Необходимо также учитывать, что сахара не образуются в условиях, при которых синтезируются аминокислоты и азотистые основания (Shapiro, 1984).
Американский биохимик Роберт Шапиро (1935—2011), проделавший в наше время огромное количество специальных экспериментов по абиогенному синтезу рибозы, сделал следующее заключение: «Данные, которыми мы сейчас располагаем, не подтверждают возможности синтеза рибозы в первичном бульоне, за исключением, может быть, кратких периодов, когда она могла появиться в малых концентрациях в составе сложных смесей и в условиях, в которых нуклеозидный синтез невозможен» (Shapiro, 1984).
2.3.4 Устойчивость органических соединений. Все компоненты нуклеиновых кислот по своей природе неустойчивы и легко разрушаются даже в идеальных условиях. Например, период полураспада рибозы при 0°С и рН 7 составляет 44 года, а при 100°С всего 73 минуты (Larralde, 1995). Половина образовавшегося аденина распадается за 80 лет (при 37°С), цитозина – за 340 лет (при 25°С) (Shapiro, 1995, 1999), а при повышении температуры до 100°С сроки их жизни сокращаются до 1 года и 19 дней соответственно (Levy, 1998). Поскольку физико-химические условия в первичном океане были крайне неблагоприятными для оснований и сахаров, то их предполагаемое накопление в течение миллионов лет становится маловероятным.
Те же проблемы возникают и с накоплением в «бульоне» аминокислот. Вычисления, проведённые для определения количества аминокислот, находящихся в воде в стационарном состоянии, дают очень низкие значения – порядка 10 миллионных долей грамма на литр для любой аминокислоты (Фолсом, 1982; Hull,1960). Оценив эту ситуацию, американский учёный-эволюционист, профессор К. Фолсом пришёл к заключению, что «такой водоём, конечно, не может быть „органическим бульоном“, богатым низкомолекулярными предшественниками, способным к взрывоподобному рывку, обеспечивающему развитие жизни. Скорее, это необыкновенно разбавленное „сусло“, содержащее органические соединения и немного ионов металлов» (Фолсом, 1982). Химически неверной посчитали концепцию «первичного бульона» и шведские учёные – химик Л. Силлен и геолог М. Руттен. Поскольку необходимые для синтеза биомолекул реакции направлены против химического равновесия, то их продукты в «бульоне» не могут накапливаться ни за какое время (Чайковский, 2003).
***
Основной субстанцией миллеровского бульона был дёгтеобразный нерегулярный полимер, плохо поддающийся определению. Скорее всего, именно им и был насыщен «первичный бульон», если таковой существовал вообще.
Данный текст является ознакомительным фрагментом.