Этапы великой драмы

Этапы великой драмы

В начале, как мы уже знаем, было сообщество. Это был трехслойный бактериальный мат, почти такой же, как современные бактериальные маты, с той разницей, что верхний его слой образовывали не кислородные (оксигенные), а бескислородные фотосинтетики. Это были предки цианобактерий, еще не научившиеся использовать в качестве донора электрона воду. Они по старинке потребляли сероводород и выделяли серу или сульфаты.

Второй слой составляли другие аноксигенные фотосинтетики, в том числе альфапротеобактерии — предки нынешних пурпурных бактерий (а заодно и митохондрий, но об этом чуть позже). Эти розовые создания и сегодня живут в бактериальных матах под слоем цианобактерий, потому что питаются более длинноволновым светом, который легко проходит сквозь верхний зеленый слой сообщества.

В третьем слое жило много всякой мелочи. Здесь были бактерии-бродильщики, которые сбраживали избыточную органику, производимую верхними фотосинтезирующими слоями. Они выделяли молекулярный водород, который использовался для восстановления сульфатов бактериями-сульфатредукторами. В результате их деятельности в сообществе пополнялись запасы сероводорода, необходимого двум верхним слоям. Здесь же подвизались и археи-метаногены, которые с удовольствием использовали производимый бродильщиками водород для восстановления углекислого газа и синтеза метана. Метаногены и сегодня живут практически везде, где нет кислорода и есть бродильщики, — например, у нас в кишечнике.

Сообщество было вполне устойчивым и могло спокойно существовать в таком виде сотни миллионов лет (что оно, по всей видимости, и делало). Но потом цианобактерии «изобрели» кислородный фотосинтез (см. предыдущую главу), начали выделять кислород, и спокойному существованию пришел конец. Для всех древних форм земной жизни — и для всех без исключения членов нашего древнего сообщества — кислород был опаснейшим ядом. Даже самим цианобактериям было не очень приятно жить в отравленной — с их точки зрения — среде. Но возможность наконец-то избавиться от «сероводородной зависимости» перевешивала все прочие соображения. Конечно, цианобактерии поступили крайне эгоистично — ради собственной независимости они чуть не отравили все живое на планете, но в конечном счете их эгоизм оказался полезен для биосферы. Ведь без него наша Земля и по сей день оставалась бы «планетой микробов».

К счастью для цианобактерий, они очень быстро нашли способ обезвреживать ядовитые продукты собственной жизнедеятельности. И тот же самый способ — причем даже с большей эффективностью — применили для защиты от яда обитатели второго слоя, пурпурные бактерии. Скорее всего, тут не обошлось без горизонтального обмена генами. В чем же состоял этот способ? Как обычно, эволюция слепила новую молекулярную «машинку» из того, что первым подвернулось. Для эволюции это очень характерный и легко узнаваемый стиль. Поскольку в данном случае дело касалось фотосинтезирующих микробов, в ход пошел аппарат фотосинтеза. Небольшая модификация некоторых частей этого аппарата привела к возникновению системы кислородного дыхания.

—————

Как клетки научились дышать. Упрощенно говоря, в процессе фотосинтеза квант света выбивает из молекулы хлорофилла электрон. Этот «возбужденный» электрон затем передается «из рук в руки» по цепочке белков, постепенно теряя свою энергию, которая идет на синтез АТФ. В конце концов электрон возвращается на место, то есть передается молекуле хлорофилла — той же самой или другой.

«Генеральная идея» кислородного дыхания состоит в том, что электрон берется не у хлорофилла, а у какой-нибудь другой органической молекулы (например, у пирувата — уже упоминавшейся пировиноградной кислоты), затем точно так же передается по цепочке белков-переносчиков и, наконец, торжественно «вручается» конечному получателю. Только в случае дыхания это опять-таки не хлорофилл, а другая молекула. Какая — попробуйте угадать. Ну конечно, это молекула кислорода! Получив необходимое количество электронов, ядовитый кислород тотчас присоединяет к себе соответствующее количество протонов (H+) и превращается в безобидную воду. Так хитрая клетка убивает сразу двух зайцев: обезвреживает опасный яд и запасается энергией. Ведь система синтеза АТФ за счет энергии передаваемого «с рук на руки» электрона была унаследована дыхательной «молекулярной машинкой» от аппарата фотосинтеза[31].

У цианобактерий до сих пор перенос электрона и в процессе фотосинтеза, и при дыхании осуществляется одними и теми же белковыми комплексами, так что между двумя процессами существует даже нечто вроде конкуренции за «право пользования» белками — переносчиками электронов.

—————

Однако появление свободного кислорода самый большой переполох произвело в третьем, нижнем слое сообщества. Местное население не умело фотосинтезировать, у них не было фотосинтетической электронно-транспортной цепи, чтобы быстро защититься от нового яда. Кроме того, метаболизм многих обитателей нижнего слоя было очень трудно приспособить к кислородным условиям. Например, для сульфатредукции и метаногенеза необходимы ферменты-гидрогеназы, которые в присутствии кислорода работать не могут. Бродильщикам было чуть легче. В конце концов они кое-как научились защищаться от небольших концентраций свободного кислорода при помощи специальных ферментов.

Надо полагать, переход цианобактерий к оксигенному фотосинтезу происходил не в один миг, и концентрация кислорода в бактериальном мате росла более или менее постепенно. По мере совершенствования систем дыхания в верхних слоях сообщества кислородная угроза для нижних слоев снижалась (кислород «сжигался» при дыхании). В конце концов «наверху» появились аэробные гетеротрофы с таким эффективным дыханием, что кислород вообще перестал поступать в нижний слой. После этого жизнь наладилась. Так появились бактериальные маты «современного» типа. Нижний слой современных матов — бескислородный, и сульфатредукторы с метаногенами чувствуют там себя превосходно.

Но в течение «переходного периода» анаэробным бактериям и археям нижнего слоя приходилось несладко. В качестве экстренной меры они стали активно заимствовать гены у других микробов (в последующих главах мы узнаем, что многие организмы целенаправленно пытаются хоть как-нибудь изменить свой геном в смертельно опасных ситуациях, и это служит мощным двигателем эволюции). В одной из групп архей массированное заимствование чужих генов пошло особенно удачно и приняло необыкновенно широкие масштабы. В конце концов это привело к появлению химерного организма: «сердцевина» у него осталась архейной, а почти вся «периферия» радикально изменилась и стала по большей части бактериальной. Изменился в том числе и обмен веществ.

Наш химерный микроб стал, по-видимому, микроаэрофильным, то есть способным защититься от небольших концентраций кислорода и даже использовать кислород для некоторых биохимических реакций, но не способным дышать. Он умел сбраживать углеводы путем гликолиза, превращая их в пируват. Всему этому и многому другому он «научился» у бродильщиков, гены которых присваивал. Может быть, он даже научился хищничать, растворяя клеточные стенки других микробов и высасывая содержимое.

Однако карьера специалиста по генетическому заимствованию требовала определенных изменений в механизмах работы с наследственной информацией. Самое интересное, что многие уникальные особенности эукариот могли развиться именно в связи с приспособлением к широкомасштабному присвоению чужих генов.

Во-первых, множеством чужеродных генов нужно было эффективно управлять, отделяя «зерна от плевел», — это создало предпосылки для развития систем генной регуляции.

Во-вторых, организм, столь «неразборчивый в связях», просто не мог не нахватать всевозможной генетической заразы — вирусов и мобильных генетических элементов (фрагментов ДНК, способных размножаться и перемещаться с места на место в пределах генома). О мобильных генетических элементах мы расскажем подробно в главе «Наследуются ли приобретенные признаки?». Мобильные элементы стали быстро размножаться в химерном геноме и прежде, чем клетка научилась обуздывать их активность, успели встроиться внутрь многих полезных генов. Так появились интроны — «бессмысленные» вставки в генах. Многочисленные интроны — одно из важнейших отличий эукариотической клетки (у прокариот они тоже встречаются, но их число на много порядков ниже).

В-третьих, чтобы переполненные интронами гены продолжали нормально работать, нужна была эффективная система сплайсинга (от английского splicing — «сращивание, склейка встык») — вырезания интронов из «считанных» с генов молекул матричной РНК (мРНК). Это тоже важное отличие эукариот от прокариот.

В-четвертых, сплайсинг — процесс медленный, а трансляция (синтез белка на основе мРНК) — быстрый. У прокариот трансляция начинается сразу после синтеза мРНК (транкрипции), часто даже до того, как этот синтез закончился. Рибосомы садятся прямо на недоделанную молекулу мРНК и начинают ее транслировать, пока РНК-полимеразы заканчивают транскрипцию. Если у вас в генах нет интронов, это нормально, но если интроны есть, нельзя допустить, чтобы они транслировались. Значит, нужно как-то отогнать рибосомы от недоделанных РНК, чтобы у последних была возможность спокойно завершить сплайсинг. Недавно было выдвинуто предположение, что именно это и было главным стимулом для формирования клеточного ядра. Ядерная оболочка отделила ядро («область транскрипции и сплайсинга») от цитоплазмы («области трансляции»).

В-пятых, для нашей химеры было бы вполне разумно отказаться от хранения всего генома в форме единственной кольцевой хромосомы и перейти к системе из множества линейных хромосом. Так гораздо легче меняться генами со всеми подряд, перекраивать фрагменты генома, да и встраивать все новые и новые фрагменты ДНК в одно и то же разрастающееся кольцо вряд ли было бы удобно.

—————

Линейные хромосомы — причина старения? Линейные хромосомы имеют один «недостаток» по сравнению с кольцевыми: при каждой репликации (копировании) они немножко укорачиваются, поскольку ДНК-полимераза не может скопировать самый кончик хромосомы, к которому она прикрепляется и с которого начинает репликацию. Кончики хромосом — их называют теломерами — не содержат полезных генов и состоят из коротких, многократно повторяющихся последовательностей нуклеотидов. С каждым клеточным делением теломеры укорачиваются. Когда теломеры становятся слишком короткими, клетка уже не может поделиться, не лишившись части полезной генетической информации. Поэтому клетки многоклеточного организма могут поделиться лишь ограниченное число раз. Возможно, в этом состоит одна из причин старения у многоклеточных эукариот (хотя эта гипотеза оспаривается многими экспертами). При образовании половых клеток теломеры приходится восстанавливать, достраивать. Для выполнения этой функции эукариоты приспособили «прирученные» мобильные элементы — ретротранспозоны (см. главу «Наследуются ли приобретенные признаки?»).

—————

Помимо всего перечисленного наша химера обладала еще одним уникальным свойством — она была способна к фагоцитозу, то есть умела «заглатывать» крупные объекты, в том числе целые бактериальные клетки. Современные бактерии и архей не умеют этого делать. Фагоцитоз сегодня характерен только для эукариот. Мы пока не знаем точно, когда и почему химерный предок эукариот приобрел эту способность. Может быть, он сначала стал фагоцитирующим хищником, и вместе с проглоченными микробами в его клетку стали постоянно попадать чужие гены, так что ему пришлось приспосабливаться к этому. А может быть, научился фагоцитировать, уже имея эффективные средства для работы с чужими генами.

Так или иначе, в один прекрасный момент он проглотил маленькую пурпурную бактерию или, скорее, произошедшую от пурпурных бактерий гетеротрофную аэробную (умеющую дышать) бактерию и не стал ее переваривать. Этим знаменательным событием, собственно говоря, и завершилось в общих чертах становление эукариотической клетки. Наша полуфантастическая химера с живущими и размножающимися в ее цитоплазме аэробными бактериями — будущими митохондриями — это уже не что иное, как примитивная эукариотическая клетка.

—————

Митохондрии — органеллы, обеспечивающие энергией клетки всех животных и растений. Они размножаются делением, как бактерии, и не могут образовываться de novo, то есть «с нуля». Митохондрии унаследовали от своих предков-бактерий маленькую кольцевую хромосому, содержащую, правда, гораздо меньше генов, чем у любой бактерии. Геном митохондрии кодирует лишь малую часть белков, необходимых для жизни, нормального функционирования и размножения самой митохондрии. Все недостающие белки поступают в митохондрию извне — из цитоплазмы клетки, а кодирующие их гены находятся в клеточном ядре.

На сегодняшний день твердо установлено, что практически все эти «митохондриальные гены ядерной локализации» когда-то располагались в митохондриальной хромосоме, а затем были перенесены в ядро. Быстрее всего процесс переноса шел на ранних этапах становления эукариотической клетки, то есть вскоре после того, как предки эукариот приобрели своих замечательных симбионтов. У животных этот процесс зашел дальше, чем у растений. Митохондриальная хромосома человека, например, кодирует всего 13 белков и имеет размер около 16,5 тысяч пар нуклеотидов. В ней остались только те гены, которые невозможно перенести по техническим причинам: строение кодируемых ими белков не позволяет транспортировать их через оболочку митохондрий. У растений митохондриальные геномы примерно в 10–20 раз больше, и эпизодический перенос отдельных митохондриальных генов в ядро продолжается по сей день.

—————

Возможно, еще до того, как произошло это эпохальное заглатывание, химера «всосала» в себя многие гены будущих митохондрий. Она ведь, разумеется, жила с ними бок о бок, в тесном симбиозе. Будущие митохондрии — обитатели второго слоя сообщества — защищали химеру, притаившуюся внизу, от избыточного кислорода. Химера производила низкомолекулярные углеводы (такие как пируват), а будущие митохондрии питались ими. Симбиоз мог зайти довольно далеко даже без объединения в единую клетку. Можно представить себе, что химера, перенявшая часть генов у своих аэробных соседей, постепенно начала снабжать их даже необходимыми белками. И постепенно, исподволь, научилась управлять их жизнедеятельностью — точно так же, как и сегодня эукариотическая клетка снабжает свои митохондрии белками и держит их под полным контролем. Симбионты, попав в такие «тепличные» условия, постепенно растеряли те гены, белковыми продуктами которых их обеспечивали извне.

Активный перенос митохондриальных генов в ядро продолжался еще некоторое время после того, как химера «проглотила» предков митохондрий. Американские биологи недавно получили новые данные, показывающие, что этот процесс, вероятно, сильно замедлился после появления полового размножения и может вновь активизироваться в случае его вторичной утраты.

—————

Половое размножение препятствует переносу генов из митохондрий в ядро. У растений процесс переноса генов из митохондрий в ядро продолжается и по сей день. Остается открытым вопрос о том, зачем (или почему) митохондриальные гены переносятся в ядро. В долгосрочной перспективе ядерная локализация этих генов дает очевидные преимущества. К ядерным генам гораздо легче «пристроить» эффективные системы регуляции, которые позволяют увеличивать или уменьшать активность гена в зависимости от потребностей клетки. Ядерные хромосомы, в отличие от митохондриальных, у большинства организмов присутствуют в двух копиях (одна от отца, другая от матери). В процессе образования половых клеток парные хромосомы обмениваются между собой участками. В результате этого обмена (рекомбинации), а также вследствие слияния половых клеток (оплодотворения) в каждом поколении образуются новые сочетания генетических вариантов. Все это в конечном счете повышает генетический полиморфизм (разнообразие) популяции, ее устойчивость и приспособляемость к меняющимся условиям, создает более благоприятные условия для распространения полезных мутаций и снижает вероятность генетического вырождения вследствие необратимого накопления мутаций вредных. Митохондриальная хромосома не рекомбинирует. Митохондрии размножаются исключительно бесполым путем («клонируются») и передаются только по материнской линии. Поэтому все потомки одной женской особи имеют одинаковые митохондриальные геномы, идентичные материнскому. Очевидно, это не очень «здоровый» способ передачи наследственной информации, практически исключающий возможность прогрессивной эволюции генов, оставшихся в митохондриях, при том что скорость накопления мутаций в митохондриальной хромосоме намного выше, чем в ядерных.

Может быть, митохондриальные гены переселились в ядерный геном как раз для того, чтобы на них распространились все те преимущества, которые дают рекомбинация и половое размножение? Примерно так и рассуждают многие исследователи. Правда, в этом объяснении есть уязвимое место: преимущества, о которых идет речь, могут проявиться лишь в отдаленной эволюционной перспективе. Перенос гена из митохондрии в ядро едва ли может обеспечить организму или популяции мгновенную выгоду, а естественный отбор не в состоянии «заглядывать в будущее». Более того, этот перенос должен идти поэтапно, проходя целый ряд промежуточных стадий. Сначала копия митохондриального гена должна встроиться в одну из ядерных хромосом. Затем к ней должна в результате случайных перестановок участков ДНК пристроиться подходящая регуляторная область (чтобы ген заработал), а также особый фрагмент, который будет сигнализировать клетке, что белок — продукт данного гена — следует транспортировать в митохондрию. Все митохондриальные гены ядерной локализации имеют такой сигнальный фрагмент. Только после этого исходный ген, локализованный в митохондриальной хромосоме, может быть отключен или удален.

Многочисленные приспособления растений, препятствующие самоопылению, имеют, как выяснилось, еще одну функцию: они препятствуют крупным генетическим перестройкам.

На всех этих промежуточных стадиях любые перетасовки генетического материала, происходящие в результате рекомбинации и полового размножения, могут только помешать делу. Например, представьте себе популяцию организмов, размножающихся половым путем, в которой у одних особей митохондриальный ген в ядерной хромосоме уже «включился», а у других еще нет, у одних митохондриальная копия еще работает, у других — уже нет. Ничего хорошего от скрещивания особей с разными состояниями этих признаков явно не получится, поскольку жизнеспособными будут не все, а только некоторые из возможных сочетаний ядерных и митохондриальных геномов. С гораздо большей вероятностью подобные генетические изменения возникнут и зафиксируются у организмов, размножающихся вегетативным путем или практикующих самооплодотворение. И это несмотря на то, что таким организмам перенос митохондриальных генов в ядро, казалось бы, вовсе не нужен, поскольку он не даст им тех долгосрочных преимуществ, о которых шла речь выше.

Какой же фактор был важнее для переноса митохондриальных генов в ядро — долгосрочная выгода или сиюминутная возможность? Кстати, вопрос можно поставить и шире, ведь о многих эволюционных преобразованиях не так-то просто сказать, возникли они «зачем-то» или просто «почему-то».

Биологи из Индианского университета в Блумингтоне (США) решили проверить эти гипотезы на растениях, у которых, как уже говорилось, перенос митохондриальных генов в ядро продолжается и по сей день. Если верна первая гипотеза, то есть гены переносятся ради долгосрочной выгоды, то у растений, практикующих перекрестное опыление, митохондриальные гены должны переноситься в ядро чаще, чем у самоопыляющихся или размножающихся вегетативно. Если же гены переносились не ради выгоды, а случайно, то это должно было происходить чаще у тех видов, которым это проще осуществить, то есть у самоопыляющихся или размножающихся бесполым путем.

Ученые проанализировали геномы 170 родов покрытосеменных растений, время возникновения которых и положение на эволюционном древе более или менее твердо установлены. Для каждого рода было определено количество независимых событий переноса митохондриальных генов в ядро. Оказалось, что количество таких событий значительно выше в тех эволюционных линиях, где преобладают вегетативное размножение и самоопыление. Таким образом, подтвердилась вторая гипотеза: гены чаще переносятся не у тех видов, кому это выгодно, а у тех, кому это легче осуществить.

Кроме того, оказалось, что корреляция между числом переносов и способом размножения лучше выражена для тех эволюционных событий (переносов), которые произошли сравнительно недавно, чем для более древних. Одна из возможных интерпретаций этого обстоятельства состоит в том, что отказ от нормального полового размножения — это своего рода эволюционный тупик, и растения, пошедшие по этому пути, либо довольно быстро вымирают, либо возвращаются к перекрестному опылению.

Авторы предполагают, что тем же закономерностям должны подчиняться и перенос генов из пластид в ядро (пластиды, как мы помним, тоже являются потомками симбиотических бактерий), и перемещения генов с одной хромосомы на другую в пределах ядерного генома. Если эти предположения подтвердятся, это будет означать, что половое размножение является мощным фактором, препятствующим крупномасштабным геномным перестройкам у эукариотических организмов.

(Источник: Yaniv Brandvain, Michael S. Barker, Michael J. Wade. Gene Co-Inheritance and Gene Transfer // Science. 2007. V. 315. P. 1685.)

—————

Конечно, описанный нами сценарий происхождения эукариот — лишь один из множества возможных, но некоторые его детали удивительно хорошо подтверждаются фактами. Например, удалось установить, что гены митохондриального происхождения на первых порах переносились в ядерный геном не по одной штучке в сто миллионов лет, а быстро и сразу большими порциями — в виде длинных фрагментов ДНК. То есть именно так, как, по нашим представлениям, должна была усваивать наследственный материал охочая до чужой ДНК химера.

Последним актом в этой истории стало заглатывание химерой цианобактерии, которая дала начало пластидам.

Наконец появившийся с такими трудами эукариотический организм мог вздохнуть с облегчением (ведь дышать-то он теперь умел — у него были митохондрии!). Он преодолел все трудности и стал независимым от микробного сообщества. С цианобактериальным фотосинтезом, альфапротеобактериальным дыханием, гликолизом «от бродильщиков» и эффективной системой управления геномом на архейной основе этот шедевр эволюционной «блочной сборки» теперь был сам себе полноценным сообществом. Впрочем, в первое время после своего появления эукариоты, возможно, оставались еще привязанными к своим родным бактериальным матам из-за недостатка кислорода в окружающей среде: цианобактерии еще не успели «надышать» его в достаточном количестве. Поначалу приличные концентрации кислорода можно было найти только в непосредственной близости от цианобактериальных матов. За пределами микробных сообществ кислород очень быстро вступал в реакции с различными растворенными в морской воде восстановленными веществами (особенно с двухвалентным железом). И пока все это железо не окислилось и не выпало в осадок, образовав крупнейшие залежи железных руд, концентрация кислорода в воде и воздухе оставалась низкой. Тут, конечно, пробил час железобактерий, о которых мы рассказывали в главе «Планета микробов», а также множества других хемоавтотрофных бактерий, быстро научившихся извлекать энергию из окисления самых разных веществ новым мощным окислителем — молекулярным кислородом. В ход пошли и соединения серы (серобактерии), и метан (аэробные метанотрофные бактерии).

К сожалению, пока у нас слишком мало данных, чтобы построить точную хронологию описанных событий.

Известно, что около 2,4–2,5 млрд лет назад происходил быстрый рост концентрации кислорода в гидросфере и атмосфере. Это называют «великим окислением» (great oxidation event). Впрочем, некоторые исследователи, в том числе известный палеонтолог А. Ю. Розанов, допускают значительно более раннее начало оксигенизации атмосферы[32].

1,9–2,0 млрд лет назад, судя по молекулярно-филогенетическим реконструкциям и «молекулярным часам», жил последний общий предок всех современных митохондрий. Такой же возраст имеют и самые древние бесспорные ископаемые эукариоты. Однако есть и более древние находки, трактуемые некоторыми исследователями как остатки эукариотических клеток.

Возможно, процесс становления эукариотической клетки растянулся на несколько сотен миллионов лет. Не исключено, что в течение этого переходного периода существовали многочисленные и разнообразные эукариотоподобные формы, в том числе с различными внутриклеточными симбионтами, но только 1,9–2,0 млрд лет назад возник особенно удачный симбиотический организм, потомки которого в дальнейшем вытеснили своих менее удачливых предшественников.

Данный текст является ознакомительным фрагментом.