Дупликация генов
Дупликация генов
МНОГОФУНКЦИОНАЛЬНЫЕ ГЕНЫ — ОСНОВА ЭВОЛЮЦИОННЫХ НОВШЕСТВ.
Мысль о том, что дупликация генов служит важнейшим источником эволюционных новшеств, была высказана еще в 1930-е годы выдающимся биологом Джоном Холдейном (Haldane, 1933). Сегодня в этом нет никаких сомнений. Идея проста. Появление в геноме «лишней» копии гена открывает свободу для эволюционного экспериментирования. Мутации, возникающие в одной из двух копий и ослабляющие исходную функцию гена, не будут отсеиваться отбором, потому что остается вторая копия, сохраняющая прежнюю функциональность. Отбор отсеивает только те мутации, которые снижают приспособленность организма, а для этого нужно, чтобы испортились сразу обе копии гена. Поэтому одна из копий, скорее всего, останется более или менее неизменной, а другая начнет свободно накапливать случайные мутации. С большой вероятностью эта меняющаяся копия будет безнадежно испорчена или вовсе потеряна. Однако есть шанс, что какая-нибудь мутация придаст меняющейся копии новое полезное свойство. Достаточно, чтобы это свойство поначалу было выражено в самой минимальной степени. Отбор «ухватится» за возникшее преимущество и начнет оптимизировать ген для выполнения новой функции.
Такой способ возникновения эволюционных новшеств называют неофункционализацией. Одна из копий удвоившегося гена остается под действием очищающего отбора, не меняется и сохраняет старую функцию, в то время как другая копия приобретает новую. Разумеется, в большинстве случаев новая функция будет родственна исходной: это будет некая вариация на старую тему (помните, мы говорили в главе 1 о трудности перехода с одной возвышенности ландшафта приспособленности на другую?)
Часто бывает и так, что белок, оптимизированный отбором для какой-то одной функции, способен с низкой эффективностью выполнять и другие, второстепенные или вовсе ненужные организму функции — просто в качестве побочного эффекта. Например, большинство ферментов, специализированных для работы с каким-то одним субстратом, могут немножко работать и с другими молекулами, похожими на основной субстрат. Про такие ферменты можно сказать, что они преадаптированы к приобретению новой функции. Если условия изменятся таким образом, что эта дополнительная функция окажется полезной, белок может специализироваться на ней — превратить свое хобби в основную работу (Conant, Wolfe, 2008). Причем это будет особенно легко сделать, если ген данного белка случайно подвергнется дупликации. Ведь в этом случае одна из копий гена может сохранить старую специализацию, а другая — оптимизироваться для выполнения новой функции. Это называют субфункционализацией, или попросту разделением функций.
Ну а если основная функция белка по-прежнему полезна, дополнительная функция («хобби») тоже полезна, а разделения функций не происходит, потому что ген не дуплицировался? В этом случае отбор будет оптимизировать белок для выполнения обеих функций одновременно. Это самое обычное дело: многие гены действительно выполняют в организме не одну, а несколько полезных функций (для простоты изложения будем говорить о случае, когда функций две). Такой ген находится в состоянии адаптивного конфликта. Если в нем возникает мутация, улучшающая выполнение одной из функций, она окажется полезной только в том случае, если от этого не слишком пострадает вторая функция. В результате ген балансирует между двумя направлениями оптимизации, и его структура представляет собой компромисс между противоречивыми требованиями отбора. Понятно, что в такой ситуации ни одна из двух функций не может быть доведена до совершенства. Для таких генов дупликация может стать «долгожданным избавлением» от внутреннего конфликта. Если многофункциональный ген наконец дуплицируется, возникшие копии с большой вероятностью поделят между собой функции и быстро оптимизируются в разных направлениях. Такова схема ухода от адаптивного конфликта.
—————
Классические примеры появления новых генов путем дупликации
Кристаллины — белки хрусталика глаза. Водорастворимость, прозрачность и устойчивость (долгий «срок хранения») — чуть ли не единственные обязательные требования, предъявляемые отбором к белкам-кристаллинам. Вероятно, именно поэтому разные типы кристаллинов у животных многократно формировались из самого разнообразного «подручного материала». Например, дельта-кристаллины птиц и рептилий произошли путем дупликации и субфункционализации от фермента аргининосукцинат-лиазы, тау-кристаллины — от энолазы, SIII-кристаллины — от глутатион-S-трансферазы, дзета-кристаллины — от хинон-оксидоредкутазы. Некоторые кристаллины даже сохранили свою ферментативную активность: такие белки могут в хрусталике работать кристаллинами, а в других тканях — ферментами или шаперонами[70]. Так, эпсилон-кристаллин у птиц одновременно является ферментом лактат-дегидрогеназой (Wistow, Piatigorsky, 1987; True, Carroll, 2002). От такого «совместительства» их часто освобождают генные дупликации и субфункционализация. Скажем, у человека кристаллин альфа-B совмещает функции кристаллина и шаперона, а у рыбки данио рерио соответствующий ген дуплицировался, причем одна из копий (альфа-B1) сосредоточилась на оптической функции в хрусталике, а вторая (альфа-В2) — на функции шаперона в других тканях (Smith et al., 2006).
Особенно часто кристаллины формируются из ферментов гликолиза — биохимического процесса, в ходе которого клетка запасает энергию, расщепляя глюкозу без использования кислорода. Дело в том, что в эмбриональном развитии хрусталик формируется из клеток, не способных к кислородному дыханию: эти клетки могут добывать энергию только путем гликолиза. Поэтому они прямо-таки набиты гликолитическими ферментами. Ну а естественный отбор — великий оппортунист и приспособленец, он создает адаптации не из того, что лучше, а из того, что первым подвернется.
В привлечении шаперонов на роль кристаллинов логика примерно такая же — оппортунистическая. Шапероны отвечают за стабильность структуры других белков и сглаживают воздействие стрессовых факторов, будь то мутации или колебания температуры. Хрусталик формируется в некотором смысле в «стрессовых» условиях (без кислородного дыхания), а его содержимое должно быть очень устойчивым к любым стрессам: хрусталик должен сохранить прозрачность и светопреломляющие свойства в течение всей жизни организма, в условиях высокой освещенности, без какой-либо помощи извне, без кровеносных сосудов, без нервов. Поэтому присутствие шаперонов в формирующемся хрусталике — адаптация вполне логичная. Ну а раз они там уже есть, чем не материал для эволюции новых кристаллинов?
Белки-антифризы антарктических рыб. Нототениевые рыбы — самая разнообразная и массовая группа рыб в холодных антарктических морях. Успех нототениевых связан с наличием в их крови удивительных белков-антифризов. Эти белки присоединяются к зарождающимся кристалликам льда и не дают им расти, что позволяет нототениевым жить при экстремально низких температурах (соленая морская вода замерзает при ?1,9 °C, а кровь обычных морских рыб — при ?0,7… ?0,1 °C). Как ни удивительно, антифризы нототениевых произошли от белка, функция которого не имеет ничего общего с защитой от замерзания. Их предком был трипсин — фермент поджелудочной железы, расщепляющий белки в пищеварительном тракте. Все гены антифризов (их у нототениевых несколько) очень похожи друг на друга и явно произошли путем последовательных дупликаций от одного предкового гена, который в свою очередь сформировался из дубликата гена, кодирующего трипсиноген (белок, из которого затем производится фермент трипсин). Начало и конец у генов антифризов остались такими же, как у трипсинового гена, а в середине разместился многократно повторяющийся (амплифицированный) девятинуклеотидный фрагмент из средней части гена трипсина, кодирующий три аминокислоты: треонин-аланин-аланин. Этот повторяющийся аминокислотный мотив составляет «костяк» молекулы антифриза. Судя по показаниям молекулярных часов, дупликация исходного трипсинового гена и появление первого антифриза произошли 5–14 млн лет назад. Это примерно совпадает со временем резкого похолодания в Антарктике (10–14 млн лет назад), а также с началом быстрой адаптивной радиации нототениевых рыб (Chen et al., 1997).
У одного представителя нототениевых — антарктического клыкача Dissostichus mawsoni — обнаружен белок, промежуточный между трипсиногеном и типичным антифризом: в нем сохранились фрагменты исходного трипсиногена, утраченные остальными антифризами. Этот белок — настоящая молекулярная «переходная форма».
У некоторых арктических рыб в ходе приспособления к жизни в ледяной воде тоже появились белки-антифризы, но другие. Антифриз трески напоминает по своей структуре антифризы нототениевых, но ничего общего не имеет с трипсиногеном. Происхождение трескового антифриза пока не выяснено, ясно только, что это было независимое приобретение. У других арктических рыб свои уникальные антифризы сформировались из других белков — лектинов и аполипопротеинов (True, Carroll, 2002).
Появление специализированной рибонуклеазы (фермента, расщепляющего РНК) у обезьян, питающихся листьями. У колобин — обезьян Старого Света, питающихся трудноперевариваемой растительной пищей, — развился особый отдел желудка, где симбиотические бактерии переваривают несъедобную для животных целлюлозу[71]. Сама обезьяна питается фактически этими бактериями, а в них, как и в любых быстро растущих бактериальных популяциях, очень много РНК.
Чтобы переваривать бактериальную РНК, колобинам нужен фермент — РНКаза, способная работать в кислой среде. У предков колобин такого фермента не было. Зато у них, как у всех обезьян, была другая РНКаза (RNase1), работающая в щелочной среде и способная расщеплять двухцепочечную РНК. Это один из механизмов противовирусной защиты, не имеющий отношения к пищеварению.
У колобин в связи с переходом к питанию симбиотическими бактериями появилась новая РНКаза — RNase1B. Она производится в поджелудочной железе и поступает в тонкий кишечник. В кишечнике у колобин, в отличие от других обезьян, среда кислая, а не щелочная. Новый фермент отлично переваривает бактериальную РНК, но не способен обезвреживать двухцепочечную вирусную РНК.
Ген Rnase1B возник в результате дупликации исходного гена RNase1. После дупликации одна из копий сохранила старую функцию, а другая приобрела новую. При этом на первую копию действовал очищающий отбор, а на вторую — положительный, что привело к закреплению девяти значимых замен. Эксперименты показали, что каждая из этих девяти замен снижает эффективность выполнения исходной функции — расщепления двухцепочечной РНК. Следовательно, дупликация была необходима для развития новой функции: не будь у колобин «запасной» копии гена, которая продолжила выполнять старую функцию, отбор вряд ли смог бы закрепить эти девять мутаций (Zhang et al., 2002).
«Молочные» белки таракана Diploptera punctata. Эти живородящие тараканы выкармливают своих детенышей специальными белками, которые произошли путем дупликации и неофункционализации от липокалинов — внеклеточных белков, отвечающих за транспорт небольших гидрофобных молекул (липидов, стероидов, ретиноидов и др.) (Williford et al., 2004). По-видимому, от того же предкового липокалина у другого таракана, Leucophaea maderae, произошел белок-афродизиак, при помощи которого самцы привлекают самок (Korchi et al., 1999).
—————
Можно ли на практике отличить неофункционализацию от ухода от адаптивного конфликта? По идее, это должно быть не так уж сложно. В первом случае одна копия гена подвергается очищающему (отрицательному) отбору и продолжает выполнять исходную функцию, а вторая копия подвергается положительному отбору. О том, как определить, какой тип отбора действовал на ген, мы говорили в главе 2. Во втором случае обе копии подвергаются положительному отбору, причем эффективность выполнения обеих функций растет.
Проверять такие теории на практике биологи научились лишь недавно. Например, в 2008 году генетики из Университета Дюка (США) применили эти критерии к дуплицированному гену фермента у ипомеи — рода растений из семейства вьюнковых (Des Marais, Rausher, 2008). Фермент называется дигидрофлавонол-4-редуктаза (DFR). Он восстанавливает различные флавоноиды, превращая их в красные, пурпурные и синие пигменты-антоцианы. Это исходная функция данного фермента, которую он выполняет почти у всех цветковых растений. Кроме того, фермент катализирует некоторые другие химические реакции, причем полный спектр его возможностей на сегодняшний день не установлен.
У ипомеи и нескольких ее близких родственников ген DFR присутствует в виде трех копий, расположенных вплотную друг к другу (DFR-A, DFR-B, DFR-C). У других вьюнковых ген имеется только в одном экземпляре. Все вьюнковые с утроенным геном DFR образуют кладу, т. е. группу, происходящую от одного общего предка и включающую всех его потомков. На начальных этапах эволюции этой группы ген подвергся двум последовательным тандемным дупликациям. Сначала возникло две копии, одна из которых стала геном DFR-B, а вторая дуплицировалась еще раз и превратилась в DFR-A и DFR-C.
По соотношению синонимичных и значимых замен авторы установили, что после первой дупликации тот ген, который впоследствии разделился на DFR-A и DFR-C, находился под действием положительного отбора. В нем быстро фиксировались значимые замены, т. е. шла адаптивная эволюция. Что касается гена DRF-B, то в нем скорость фиксации значимых замен после дупликации вроде бы не выросла. Это, казалось бы, свидетельствует в пользу неофункционализации, т. е. говорит о том, что ген DRF-B сохранил исходную функцию, а DFR-A и DFR-C приобрели новую. Однако выводы на этом этапе делать еще рано, потому что важные адаптивные изменения могут быть обусловлены очень небольшим количеством значимых замен. В принципе даже одна-единственная аминокислотная замена может изменить свойства белка.
Чтобы точно установить, имела ли место адаптивная эволюция гена DFR-B после дупликации, необходимо было экспериментально исследовать свойства кодируемого им белка. Именно это и проделали авторы. Они изучили каталитическую активность белков DFR-A, DFR-B и DFR-C ипомеи, а также исходный вариант белка DFR других вьюнковых. Все белки проверялись на способность восстанавливать пять разных субстратов (веществ из группы флавоноидов).
Оказалось, что белок DFR-B ипомеи работает эффективно со всеми пятью субстратами. Исходный белок DFR справляется со всеми ними намного хуже. Наконец, DFR-A и DFR-C вообще не проявляют каталитической активности по отношению к этим пяти субстратам.
Таким образом, белок DFR-B после дупликации стал лучше справляться со своей основной функцией — восстановлением флавоноидов, — чем до дупликации. И это несмотря на то, что после дупликации в нем зафиксировалось мало значимых замен. Как выяснилось, одна-единственная замена в ключевой позиции резко повысила эффективность фермента. История получилась довольно детективная.
У большинства цветковых растений в позиции 133 в белке DFR стоит аминокислота аспарагин (Asn133), которая играет важную роль в «схватывании» ферментом своего субстрата. Белки DFR с Asn133 эффективно восстанавливают флавоноиды. Однако у далеких предков вьюнковых (у общего предка пасленоцветных и горечавковых) этот столь важный аспарагин заменился на аспарагиновую кислоту (Asp133). Это привело к ухудшению «флавоноидной» функции фермента. Почему же такая вредная мутация не была отсеяна отбором? Очевидно, к тому времени у белка DFR в этой эволюционной линии (т. е. у предков пасленоцветных и горечавковых) появилась новая дополнительная функция. Отбор начал оптимизировать белок сразу по двум направлениям, и замена аспарагина на аспарагиновую кислоту в 133-й позиции была следствием компромисса — прямым результатом адаптивного конфликта. В чем состоит эта дополнительная функция, к сожалению, выяснить не удалось. Но изменение произошло в том участке белка, который отвечает за связывание субстрата, значит, речь идет о работе с какими-то новыми субстратами.
С тех пор большинству пасленоцветных и горечавковых пришлось довольствоваться «компромиссным» вариантом белка DFR. Но у предков ипомеи ген DFR удвоился, появилась уникальная возможность уйти от адаптивного конфликта и разделить функции между белками. И предки ипомеи эту возможность не упустили. После дупликации у белка DFR-B восстановился аспарагин в 133-й позиции. Это резко усилило каталитическую активность по отношению к флавоноидам. Эффективность фермента снова стала высокой, как у далеких предков, у которых фермент еще не имел дополнительной функции. И для этого хватило одной-единственной аминокислотной замены (именно поэтому анализ соотношения значимых и синонимичных замен не выявил следов положительного отбора в гене DFR-B).
Что же произошло с генами DFR-A и DFR-C? Очевидно, они вовсе отказались от старой функции (работы с флавоноидами) и посвятили себя выполнению новой. Если замена аспарагина на аспарагиновую кислоту была компромиссным решением, позволявшим кое-как совместить обе функции в одном белке, то можно предположить, что у DFR-A и DFR-C аспарагиновая кислота заменится на что-то еще, но только не на аспарагин. Так и произошло. У разных видов ипомей в белке DFR-A 133-ю позицию занимают разные аминокислоты, а в белке DFR-C здесь всегда стоит изолейцин, что лишает белок способности работать с флавоноидами.
Хотя в этом исследовании осталась досадная «дырка» — так и не удалось узнать, в чем же состоит новая функция белков DRF, — тем не менее результаты показывают, что имел место именно уход от адаптивного конфликта, а не неофункционализация. Ген DRF стал бифункциональным задолго до дупликации. Дупликация позволила разделить функции между копиями, снять адаптивный конфликт и оптимизировать каждый ген для выполнения какой-то одной функции.
В конце статьи авторы делают важное замечание. Они указывают, что в случае ухода от адаптивного конфликта по сравнению с неофункционализацией выше вероятность сохранения «лишних» копий гена после дупликации. Ведь если дуплицированный ген выполнял две функции еще до дупликации, то процесс разделения функций может быть инициирован многими разными мутациями в любой из двух копий. Случайные мутации с большей вероятностью могут чуть-чуть усилить одну из существующих функций белка, чем создать совсем новую.
С этих позиций легче понять результаты других исследований, в том числе данные о двух полногеномных дупликациях, произошедших на заре эволюции позвоночных.
Данный текст является ознакомительным фрагментом.