9. Доктор Дарвин
9. Доктор Дарвин
Болезнь в век эволюционной медицины
Александр Бивелич впервые попал в томскую тюрьму в Центральной Сибири в 1993 г. Он был осужден за воровство и приговорен к трем годам. Через два года заключения он начал кашлять и отхаркивать слизь, у него поднялась температура. Тюремные врачи обнаружили в его левом легком небольшой очаг инфекции и диагностировали туберкулез — болезнь, вызываемую бактерией Mycobacterium tuberculosis. Бивелич мог подхватить эту болезнь с капелькой мокроты от кашлявшего больного заключенного, и теперь бактерии угнездились в его собственных легких. «Никогда не думал, что могу заразиться, — говорит он. — Сначала я вообще не поверил врачам». Но болезнь все сильнее овладевала его телом, и поверить пришлось.
Туберкулез должен был хорошо поддаваться лечению. Почти 60 лет назад Селман Ваксман из Университета Ратджерса обнаружил, что некоторые бактерии вырабатывают белки, способные убивать Mycobacterium. Лекарство, открытое Ваксманом, пополнило активно растущую группу бактерицидных препаратов — антибиотиков. Все они были настолько смертельными для бактерий, что ученые-медики сделали однозначный вывод: за ближайшие несколько десятков лет инфекционные болезни, такие как туберкулез, будут уничтожены.
Но Mycobacterium не готов был сдаться так легко. Несколько месяцев тюремные врачи лечили Бивелича антибиотиками, и в 1996 г. пациент, отсидев срок, вышел из тюрьмы. В 1998 г., однако, он опять был арестован за кражу и вновь оказался в томской тюрьме. На воле он не получал никакого лечения, и когда тюремные врачи сделали рентген легких, то оказалось, что очаг инфекции за это время увеличился. Теперь поражено было не только правое, но и левое легкое. Пациент начал вновь получать антибиотики, но вскоре анализы показали, что лекарства не помогают остановить распространение инфекции. Лекарства, когда-то казавшиеся чуть ли не панацеей, Бивеличу не помогли.
Тюремные врачи решили перевести пациента на новый класс антибиотиков — мощные и дорогие лекарства, которые не так-то просто достать в России, — и на несколько месяцев его здоровье удалось стабилизировать. Но через некоторое время даже эти препараты перестали действовать. В июле 2000 г. врачи Бивелича рассматривали возможность хирургической операции и удаления пораженных частей легких. Если нож хирурга и антибиотики не остановят туберкулез в самое ближайшее время, он, вероятно, умрет.
Судьба Бивелича — не редкость в России. Там в переполненных тюрьмах возникли новые, устойчивые к антибиотикам штаммы туберкулеза, и теперь 100 000 заключенных являются носителями инфекции, устойчивой по крайней мере к одному из традиционных лекарств. Многие из этих людей, как Бивелич, являются мелкими преступниками и отбывают короткие сроки заключения. Но туберкулез способен превратить короткий срок в смертный приговор.
Бивелич — жертва темной стороны эволюции: той пугающей скорости, с которой паразиты адаптируются к своим хозяевам. Как орхидеи приспосабливаются к пчелам или фруктовые деревья — к животным, которые разносят их семена, патогены постоянно эволюционируют, образуют новые формы, ищут новые способы преодолеть защитные системы хозяев. И точно так же, как многие пестициды потеряли свою силу и перестали убивать насекомых, лекарства тоже теряют силу перед лицом мутирующих паразитов. В настоящее время во всем мире появляются резистентные формы туберкулеза и других болезней, гибнут тысячи людей. В будущем их жертвами, возможно, станут миллионы.
Только понимание законов эволюции даст, возможно, ученым-медикам шанс найти новые способы борьбы с болезнями. В некоторых случаях для этого необходимо выяснить эволюционную историю болезни — как паразит впервые сделал человека своим хозяином и какие меры принимал в ответ человеческий организм; тогда им, может быть, удастся найти средство от болезни. Не исключено, что в каких-то случаях ученые даже смогут обуздать силу коэволюции и усмирить возбудителей болезни.
Триумф паразитов
Везде, где есть жизнь, есть и паразиты. В каждом литре морской воды присутствует порядка 10 млрд вирусов. Существуют паразитические плоские черви, способные жить в мочевом пузыре пустынной жабы, которая 11 месяцев в году проводит, закопавшись глубоко в землю; существуют паразитические ракообразные, способные жить только в глазу гренландской акулы, которая вечно плавает в ледяной тьме Северного Ледовитого океана.
Нам, конечно, очень хочется сделать вид, что никаких паразитов нет, но на самом деле они принадлежат к самым успешным в эволюционном отношении видам. Вероятно, они существуют в той или иной форме миллиарды лет. Биологи даже предполагают, что некоторые вирусы на основе РНК — это выжившие обитатели РНК-мира, которые некогда охотились на ДНК-организмы. Судя по обилию, паразиты уже давно и счастливо правят миром. Помимо вирусов, паразитический образ жизни избрали многие семейства бактерий, простейших, грибов, водорослей, растений и животных. По некоторым оценкам, четыре пятых всех видов на Земле — паразиты.
Вообще, паразиты по отношению к хозяину в основе своей не слишком отличаются от жуков, которые пытаются пожрать листву дерева. Чтобы выжить, паразиты должны искать себе пропитание в хозяине; хозяин, само собой, пытается защититься. Такие двоякие требования порождают яростную коэволюционную борьбу. Любые адаптации, которые позволят хозяину остаться незараженным, будут непременно подхвачены естественным отбором. Гусеницы-листовертки, к примеру, выстреливают своим пометом из анальной пушки, чтобы не создавать на своем листе ароматной кучи навоза, которая могла бы привлечь ос-паразитов. Шимпанзе, обзаведясь глистами, разыскивают и поедают невкусные растения, убивающие паразитов. Некоторые хозяева, столкнувшись с непобедимым паразитом, пытаются выйти из ситуации с минимальными потерями. Так, когда самец плодовой мушки из пустыни Сонора становится жертвой кровососущих клещей, он начинает спариваться как сумасшедший, чтобы успеть перед гибелью передать потомству как можно больше своих генов.
Паразиты, в свою очередь, изобретают все новые способы обойти хозяйскую систему защиты. При попадании в организм хозяина паразит должен выдержать атаку иммунных клеток, которые опрыскивают его ядами, стремятся задушить, закупорив мембранные каналы, или просто заглатывают целиком. Чтобы выжить, чужаки-паразиты пользуются камуфляжем и всевозможными уловками. Они покрывают свое тело белками, которые в точности похожи на наши собственные белки. Некоторые из них при помощи мимикрии даже проникают в клетки через охраняемые проходы. Некоторые паразиты «знают», как можно заклинить систему связи, по которой иммунная система передает по всему телу новости об инфекции. Некоторые способны посылать собственные сигналы с приказом, по которому иммунные клетки тела совершают самоубийство. Но, пока паразиты придумывают новые способы обхода иммунной системы, хозяева тоже не сидят сложа руки, а изобретают новые способы уничтожения паразитов. Гонка продолжается.
Конец панацеи
Коэволюция между паразитами и их хозяевами — отнюдь не дело далекого туманного прошлого. Она продолжается каждый день, и мы с вами — участники одного из новейших экспериментов в этой области. Мы пытаемся искусственно усилить свою защиту антибиотиками, и в настоящий момент становится совершенно ясно, что нам грозит серьезнейшая опасность проиграть эту гонку вооружений.
Когда Селман Ваксман и его коллеги впервые открыли антибиотики, многие решили, что война против инфекционных болезней практически выиграна. Но некоторые исследователи с самого начала предупреждали, что эволюция может оказаться сильнее подобных чудес. Одним из таких ученых был сэр Александр Флеминг, британский микробиолог, открывший в 1928 г. пенициллин. Он провел эксперимент, в котором подверг бактерии действию пенициллина в низкой концентрации, а затем начал постепенно концентрацию увеличивать. В каждом новом поколении все больше бактерий могли сопротивляться действию лекарства, и вскоре чашки Петри в его лаборатории просто кишели бактериями, которым не страшны были регулярные дозы пенициллина.
Во время Второй мировой войны американские врачи тщательно охраняли свои запасы пенициллина и лишь иногда выдавали понемножку гражданским докторам для лечения безнадежно больных пациентов. Однако после войны фармацевтические компании начали свободную продажу этого препарата и даже изобрели таблетку, которую можно было принимать вместо инъекции. Флеминг опасался, что доктора будут прописывать чудо-лекарство всем без разбору и, что самое страшное, люди смогут сами покупать пенициллин и принимать его вообще без предписания врача.
«Величайшая опасность самолечения — использование слишком маленьких доз. Такое лечение, вместо того чтобы уничтожить инфекцию, учит микробов сопротивляться пенициллину; в результате развивается группа устойчивых к пенициллину организмов, которые могут передаваться другим людям, а от них, может быть, следующим, пока им не встретится человек, у которого разовьется сепсис или пневмония, с которыми пенициллин не сможет ничего сделать.
В этом случае глупец, игравший пенициллином, морально ответственен за смерть человека, который в конце концов пал жертвой заражения пенициллин-резистентными организмами. Надеюсь, что подобного развития событий можно избежать».
Бактерии, как позже выяснили микробиологи, владеют мастерством коэволюции даже лучше, чем насекомые; они способны менять свою генетическую структуру с поразительной скоростью. Они делятся несколько раз в час, а потому способны мутировать очень быстро, пробуя невероятное количество вариантов; время от времени у них возникают новые свойства, помогающие сопротивляться антибиотикам. В результате мутаций могут появиться белки, способные разрушать лекарство; некоторые резистентные бактерии обзавелись «насосами», которые при обнаружении антибиотика тут же выдавливают из клетки его молекулы. В обычных условиях естественный отбор не поддерживает таких мутантов, но при столкновении с антибиотиками их отпрыски добиваются успеха.
В отличие от насекомых бактерии могут получать гены резистентности не только от родителей, но и от других бактерий. Вышедшие так или иначе из клетки участки кольцевой ДНК вполне способны передаваться от одного микроба к другому. Бактерии засасывают гены погибших сородичей и вставляют некоторые из них в собственную молекулу ДНК. Так резистентные к антибиотикам бактерии могут передавать гены резистентности не только своим потомкам, но и бактериям других видов.
Российская тюрьма XXI в. — идеальная лаборатория микробной эволюции. Уровень преступности после распада Советского Союза резко подскочил, и суды посылают в тюрьмы все больше и больше людей. В настоящее время в стране миллион заключенных, но тюрьмы не в состоянии принять их всех. На питание выделяется по несколько центов в день, а недокормленные люди особенно восприимчивы к инфекции. Кроме того, в небольшие камеры приходится набивать по несколько десятков человек. Туберкулезные больные, кашляя, легко заражают своих сокамерников. Микробы быстро путешествуют от одного хозяина к другому, одновременно размножаясь и мутируя.
Mycobacterium — особенно прилипчивая зараза, которую можно уничтожить только длительным курсом лечения антибиотиками (как правило, это несколько месяцев). Если пациент не принимает все прописанные врачом лекарства, бактерии получают время на мутации; в результате успевают возникнуть и размножиться резистентные штаммы. В российских тюрьмах редко заботятся о том, чтобы пациент полностью завершил предписанный курс лечения. В истощенных недолеченных телах резистентные бактерии чувствуют себя вольготно.
Если человек заболевает резистентным туберкулезом, врачи вынуждены прибегать к более дорогим лекарствам, которые могут стоить тысячи долларов. Но денег на медицину выделяется мало, и новые формы болезни в российских тюрьмах продолжают распространяться. Врачи не питают иллюзий по этому поводу; они понимают, что большинство их пациентов выйдут на свободу носителями инфекции. Отсидевшие срок заключенные увозят резистентный туберкулез в родные города и заражают новых людей. Выпуская на свободу больных, правительство всего за шесть лет — с 1990 по 1996 г. — увеличило заболеваемость туберкулезом в России в пять раз. Эта болезнь стала одной из ведущих причин роста смертности среди молодых россиян.
«Все штаммы, возникающие в русских тюрьмах, со временем окажутся у нашего порога», — говорит Барри Крейсворт, эпидемиолог Исследовательского института здравоохранения в Нью-Йорке. Более того, Крейсворт уже обнаружил некоторые штаммы из томской тюрьмы у прибывающих в Нью-Йорк иммигрантов.
Исследовательский институт здравоохранения и другие организации пытаются остановить распространение резистентного туберкулеза в России и других местах при помощи агрессивного лечения сильнейшими доступными антибиотиками. Они надеются уничтожить резистентные штаммы и не дать им возможности эволюционировать в новые формы. Ставки в этой игре чрезвычайно высоки. Если эти бактерии продолжат развиваться, может возникнуть новая непобедимая форма туберкулеза, резистентная ко всем известным антибиотикам.
Кризис антибиотиков наблюдается, конечно, не только в России; аналогичные события происходят по всему миру. Появляются новые штаммы Е. coli, Streptococcus и других бактерий, способные сопротивляться едва ли не всем антибиотикам. Гонорея, бывшая когда-то почти безобидной, хотя и неприятной, превратилась в смертельно опасную болезнь: в Юго-Восточной Азии 98% случаев гонореи в настоящее время резистентны к пенициллину. В Лондоне врачи выделили замечательный штамм бактерии Enterococcus, который эволюционировал таким образом, что теперь жить не может без антибиотика ванкомицина.
После 20 лет самоуспокоенности фармацевтические компании только сейчас начинают работу над новыми антибиотиками. На разработку нового поколения лекарств потребуется не один год; но стоит им появиться на рынке, и никто не знает, как долго они сохранят эффективность против бактерий. А пока мы всерьез рискуем увидеть, как медицина повернет вспять — ведь риск заражения непобедимыми супермикробами сделает хирургические операции не менее опасными, чем они были в середине XIX в.
Специалисты по резистентности к антибиотикам призывают к глобальным действиям. Если человечество хочет уменьшить угрозу со стороны резистентных бактерий, оно не должно больше подстегивать их эволюцию. Антибиотики были представлены миру как панацея в 1940-х гг., и мы до сих пор воображаем, что ими можно вылечить все что угодно. В результате их прописывают гораздо чаще, чем нужно. (К примеру, многие люди считают, что антибиотики помогают против вирусов, тогда как на самом деле они эффективны только против бактерий.) Только в США врачи ежегодно прописывают населению более 25 млн фунтов антибиотиков, из которых от трети до половины либо не нужны, либо неправильно выписаны.
Врачам следует быть внимательнее и не прописывать сильных лекарств без необходимости, но и пациенты должны принимать антибиотики полным курсом, чтобы бактерии, обосновавшиеся в их телах, не получали возможности выработать способность к сопротивлению. Потребители не должны поддаваться рекламе: антибактериальные мыла и спреи только провоцируют эволюцию резистентных бактерий. Пока же необходимо остановить поток дешевых в производстве антибиотиков, которые в развивающихся странах продаются без рецепта.
Многих ученых тревожат и те 20 млн фунтов антибиотиков, которые американские фермеры скармливают скоту. Коровам, курам и другим животным дают антибиотики не для того, чтобы вылечить какую-то конкретную болезнь или пресечь вспышку болезни в данной местности, а просто затем, чтобы животные не заболели. Фермеры обнаружили также, что антибиотики — по неизвестным до сих пор причинам — способствуют более быстрому росту животных. Накачивая скот антибиотиками, фермеры практически выводят резистентные штаммы Salmonella и других бактерий, которые затем могут атаковать и людей. В 1994 г. Агентство по контролю над лекарствами и качеством пищи США одобрило применение антибиотиков класса хинолонов у кур для профилактики заражения кишечной бактерией Campylobacter jejuni. После этого частота встречаемости хинолон-резистентных Campylobacter у человека выросла с 1 до 17%.
Бактериям прекрасно живется в это странное новое время. Никогда прежде за всю их долгую историю против них не применяли таких комбинаций молекул, да еще в таких солидных количествах. Гены резистентности к антибиотикам, бывшие проблемой, стали теперь ключом к успеху. Если мы, люди, хотим выжить, мы должны положить конец этой эре.
СПИД: эволюция день за днем
Бактерии — не единственные паразиты, которых эволюция превратила в глобальную угрозу. За последние несколько десятилетий вирус иммунодефицита человека — причина синдрома приобретенного иммунодефицита, или СПИДа, — появившись вроде бы ниоткуда, вызвал глобальную эпидемию.
Вирусы, подобные ВИЧ, принадлежат к самым необычным паразитам. Они не живые — по крайней мере в том смысле, в каком живут человек и бактерия. У них нет метаболизма, который позволял бы им получать энергию из пищи и выводить отходы. Это всего лишь небольшие наборы ДНК или РНК в плотной белковой оболочке. Когда они вторгаются в клетку, их генетический материал захватывает контроль над производящими белки «фабриками» хозяина. Клетки хозяина начинают выпускать новые копии вируса, которые через некоторое время вырываются из клетки и отправляются на поиски нового дома.
По-своему вирусы так же беспощадны в коэволюции с хозяином, как бактерии. У них нет клеточного механизма, позволяющего обмениваться генами, как у бактерий, но они вполне компенсируют этот недостаток скоростью мутаций. Геном ВИЧ состоит всего лишь из 9000 нуклеотидов (сравним с 3 млрд пар в составе человеческой ДНК). Но внедрившись в нового человека-хозяина и попав в лейкоцит, он начинает бешено делиться. Всего за сутки один-единственный вирус превращается в миллиардные орды.
Почти сразу после того, как вирус начинает размножаться, наша иммунная система начинает узнавать и уничтожать зараженные лейкоциты, уничтожая вместе с ними и вирусы. Но, хотя иммунная система человека способна ежедневно убивать вирусы ВИЧ миллиардами, ВИЧ умудряется многие годы жить в организме человека и выдерживать все атаки. Секрет такого долгожительства — способность к развитию. Ферменты, при помощи которых ВИЧ изготавливает новые копии своих генов, очень небрежны и при каждом копировании генома делают в среднем одну-две ошибки. Среди множества получившихся мутантов обязательно окажутся несколько вариантов, которые иммунной системе трудно будет распознать сразу. ВИЧ размножается стремительно, и резистентные варианты быстро становятся доминирующими в теле данного человека. Иммунной системе потребуется некоторое время, чтобы научиться их распознавать, а когда это произойдет, вирус вновь сменит форму и обличье.
Равновесие между вирусом и хозяином сохраняется годами, вирус все время колеблется на грани между взрывом численности или резким ее падением. Без специальных анализов зараженный человек никак не может узнать, что внутри у него Разыгрывается яростная коэволюционная схватка. Присутствие вируса станет очевидным лишь тогда, когда он полностью подавит иммунную систему и откроет путь другим паразитам — т. е. когда начнется полномасштабный СПИД.
В настоящее время созданы лекарства, которые вмешиваются в работу репликацнонных ферментов ВИЧ и замедляют развитие СПИДа. Но, хотя такие препараты против ВИЧ появились всего несколько лет назад, ускоренная мутация вируса угрожает в самом скором времени сделать их бесполезными. Изменяясь, вирус не только уходит из-под удара новейших средств иммунной системы, но и спасается от действия лекарств. Для этого достаточно одной-двух мутаций. Всего за несколько недель количество вирусов в крови пациента может вновь подскочить до уровня, который наблюдался до начала лечения.
Можно, конечно, переключиться на другой препарат — и, если получится, уничтожить большую часть резистентных к первому лекарству вирусов, но среди уцелевших могут появиться новые мутанты, обладающие сопротивляемостью уже к новому препарату. Поэтому врачи предпочитают давать пациенту коктейль из нескольких препаратов одновременно. Сопротивляемость к одному лекарству вирус, возможно, получит после одной-двух мутаций, но вероятность того, что ему удастся одновременно уйти из-под удара нескольких препаратов, гораздо меньше. Тем не менее резистентные вирусы появляются даже при применении многокомпонентного лекарственного коктейля.
В поисках истоков СПИДа
Никто сейчас не может сказать, станут ли когда-нибудь лекарственные смеси реальным средством лечения от СПИДа. В лучшем случае эти препараты лишь помогают сдерживать рост численности вирусов, да и стоит такой курс не один десяток тысяч долларов в год, что делает его недоступным для громадного большинства жертв СПИДа. Некоторые исследователи, пытаясь найти иные пути и методы лечения, изучают историю вируса. Возможно, в его прошлом кроются факты, которые помогут найти лечение.
Когда СПИД был впервые идентифицирован как отдельное заболевание, казалось, что он появился ниоткуда. В начале 1980-х гг. американские геи начали погибать от различных странных болезней, с которыми здоровая иммунная система должна была бы справиться без труда. Оказалось, что иммунная система этих людей разрушена. Исследователи во Франции и США довольно быстро выяснили, что причина кроется в ВИЧ — вирусе иммунодефицита человека. Они также выяснили, что это опасный, но нестойкий вирус. Если вирус гриппа или простуды может передаваться по воздуху, через прикосновение губ и пальцев, то ВИЧ для этого необходима помощь: он должен перебраться непосредственно из кровотока прежнего хозяина в кровоток нового. Это может произойти во время полового акта, при использовании одного и того же шприца без стерилизации или при переливании зараженной крови.
К концу 1980-х гг. стало ясно, что человечеству грозит глобальная эпидемия. Но СПИД не похож на другие инфекционные заболевания. Так, во время эпидемии в Европе XVII в. заболевший бубонной чумой человек умирал, как правило, через несколько дней; ВИЧ, бывает, живет в человеке 10–15 лет и лишь потом сводит его в могилу. Именно неторопливость и скрытность ВИЧ виной тому, что значительную часть десятилетия с 1980 по 1990 г. инфекция распространялась почти незаметно, потихоньку переползая от одной ничего не подозревающей жертвы к другой. К 2000 г. от СПИДа страдало 36 млн человек, а 21,8 млн уже умерли от этой болезни. Самый тяжелый удар пришелся на Африку южнее Сахары, где в настоящее время СПИДом заражены 25,3 млн человек.
Откуда же взялся ВИЧ? О жизни этого вируса до начала 1980-х гг., когда началась эпидемия, нет практически никаких данных. (Отметим, что первый известный образец вируса получен из крови пациента в Заире в 1959 г.) Но ученые могут вернуться назад во времени и выяснить историю ВИЧ по генетическому коду современных вирусов — построить эволюционное древо ВИЧ.
Вирус иммунодефицита человека принадлежит к классу лентивирусов — вирусов с длительным инкубационным периодом (lentos на латыни значит «медленный»), У кошек, как диких, так и домашних, есть вирус иммунодефицита кошек; у коров — вирус иммунодефицита коров. И, что самое существенное, у приматов тоже есть соответствующий вирус — вирус иммунодефицита обезьян, очень напоминающий ВИЧ. Однако, в отличие от человека, большинство зараженных таким вирусом обезьян не заболевают. Возможно, когда-то этот вирус был для обезьян столь же смертельным, как ВИЧ в настоящее время для человека, но естественный отбор сохранил жизнь только резистентным обезьянам.
Ученые нашли доказательства того, что эпидемия ВИЧ — результат перехода обезьяньего вируса от приматов к человеку, причем происходил этот переход несколько раз. Существует множество штаммов ВИЧ, которые подразделяются на две основные группы: ВИЧ-1 — форма, распространенная в большинстве частей света, и ВИЧ-2 — форма, распространенная только в Западной Африке. В 1989 г. вирусолог Ванесса Хирш из Джорджтаунского университета и ее коллеги обнаружили, что ВИЧ-2 больше похож на вирус иммунодефицита обезьяны мангабея из Западной Африки, чем на ВИЧ-1. Точно также вирус мангабея больше похож на ВИЧ-2, чем на вирусы иммунодефицита других обезьян. Мангабеев в Западной Африке не только держат дома как домашних любимцев — на них охотятся, их едят. Хирш предположила, что в случайные царапины, полученные на охоте, попадала зараженная обезьянья кровь. Именно таким образом человек получил от обезьяны вирус иммунодефицита, который, мутировав, и превратился в ВИЧ-2.
ВИЧ-1 распространен гораздо шире, чем ВИЧ-2, но его история была четко восстановлена лишь в 1999 г. Беатрис Хан из Алабамского университета в Бирмингеме с коллегами обнаружила, что ближайшим известным родственником ВИЧ-1 является вирус иммунодефицита обезьян в той форме, в какой он встречается у шимпанзе. И не просто у шимпанзе — все вирусы, максимально похожие на ВИЧ-1, обнаружены в образцах единственного подвида шимпанзе — Pan troglodytes troglodytes, живущих в Габоне, Камеруне и соседних с ними странах экваториальной части Западной Африки. Именно от этого подвида шимпанзе, сделала вывод Хан, человек и унаследовал вирус ВИЧ-1, причем это происходило в разное время по крайней мере трижды.
Хан и ее коллеги теперь пытаются восстановить общую картину возникновения ВИЧ. Конечно, это всего лишь гипотеза, но гипотеза, которая подтверждается по мере появления новых данных. Предки мангабеев и шимпанзе сотни тысяч лет были носителями вируса — предка ВИЧ. Иногда охотники, разделывая добычу, подхватывали эти вирусы (вместе с множеством других). Но у предка ВИЧ, плохо приспособленного к жизни в организме человека, было мало шансов выжить и утвердиться в новом хозяине. Даже уцелев в теле одного охотника, вирусы не могли сильно распространиться. Происходило такое очень редко, да и охотники жили обычно на отшибе и мало общались с внешним миром. Вирус, как правило, вымирал прежде, чем получал возможность переселиться в новых хозяев.
Все стало иначе после драматических перемен, которые пережила Западная Африка в XX в., — ВИЧ освоился в представителях нашего вида и пошел гулять по миру. В Африке выросли города; в глубину континента протянулись железные дороги; в леса пришли лесорубы с мощными машинами; люди вынужденно переселялись на плантации и в поселки в поисках работы. Вырос спрос на дичь, а вместе с ним и частота контакта охотников с кровью приматов. Люди начали быстро перемещаться по стране на автобусах и поездах, и теперь вирус мог легко перейти с первого своего человеческого контакта к новым хозяевам.
Разнообразие вирусов ВИЧ среди народов Экваториальной Африки огромно по сравнению с остальным миром, и это, по мнению Хан, говорит о том, что вирус обезьяньего иммунодефицита передавался здесь от обезьян человеку не один, а много раз. ВИЧ-2 перепрыгивал из мангабеев в людей не меньше шести раз, а ВИЧ-1 переключался с Pan t. troglodytes на человека по крайней мере трижды. Большинство таких прыжков заводили вирус в тупик. Из шести штаммов ВИЧ-2 лишь двум удалось как следует закрепиться в человеке, а глобальной эпидемией СПИДа мы обязаны в основном одному-единственному штамму ВИЧ-1. Стоило Западной Африке вступить в более тесный контакт с окружающим миром, и вирус вырвался на свободу — распространился в Европу, США и по всему миру.
Пока это лишь гипотеза, которая нуждается в дополнительной проверке. Эволюционное древо ВИЧ, нарисованное Хан, основано на исследовании вирусов всего из шести особей шимпанзе; возможно, с получением новых данных какие-то ветви дерева придется поменять местами. Но добыть образцы вирусов из крови диких шимпанзе очень непросто, и с каждым днем задача становится все труднее: из-за активной торговли мясом шимпанзе, ставшей, возможно, причиной глобальной эпидемии СПИДа, Pan t. troglodytes стремительно исчезает с лица земли.
Не исключено, что в этих шимпанзе заключена тайна первых глав биографии вируса ВИЧ. Они заражены ближайшим известным родственником ВИЧ-1, но их иммунная система с ним вполне справляется. Поскольку вирусы находятся в близком родстве, механизмы защиты от них, выработанные обезьянами, могут оказаться ключом к лекарству от СПИДа. Если эти обезьяны исчезнут, тайна, возможно, исчезнет вместе с ними.
«Наши больницы полны неизлечимыми больными с инфекционными болезнями вроде СПИДа. Эти же самые болезни встречаются и у животных, вот только животные не могут вызвать к себе скорую помощь», — говорит Стивен О’Брайен, вирусолог из Национального института рака. — У них есть только естественный отбор. Если мы посмотрим на их геном и поймем, как они отражают атаки этих вирусов, мы сможем гораздо лучше разрабатывать методы лечения людей.
Спасенные черной смертью?
О’Брайен изучает эволюцию в поисках новых, нестандартных способов борьбы с ВИЧ. Человек и прежде эволюционировал, защищаясь от паразитов, и вполне возможно, что некоторые из давних приспособительных механизмов и сегодня уберегают некоторых людей от ВИЧ.
Начиная с 1985 г. О’Брайен собирает образцы крови у людей, принадлежащих к различным группам риска по ВИЧ, — к примеру, у гомосексуалистов и наркоманов, постоянно делающих себе внутривенные инъекции. Он анализирует их ДНК — сравнивает гены тех, кто заразился ВИЧ, с генами тех, кто не заразился, — в надежде обнаружить мутации, которые, возможно, способны защитить человека от вторжения вируса.
К середине 1990-х, когда в коллекции собралось более 10 000 образцов, О’Брайен и его команда приуныли. «Мы начинали терять энтузиазм. Мы проверили несколько сотен генов, один за другим, и на каждый из них получили один и тот же ответ — никакого эффекта». Но в 1996 г. положение наконец изменилось. Тогда несколько команд исследователей одновременно обнаружили, что ВИЧ, проникая в лейкоцит, каким-то образом взламывает рецептор на поверхности клетки, известный как CCR5. Команда О’Брайена вновь обратилась к своим образцам в поисках мутаций гена, ответственного за производство этого рецептора.
«Мы были поражены», — говорит О’Брайен. Такая мутация обнаружилась: у некоторых людей отсутствовала секция гена, включающая 32 основания. Ген с такой мутацией не мог производить нужный белок. В результате у людей, у которых обе копии соответствующего гена были мутантными, на поверхности лейкоцитов не было рецепторов CCR5 (а у тех, у кого мутантной была лишь одна копия гена, таких рецепторов было меньше обычного). Кроме того, О’Брайен обнаружил сильную корреляцию между наличием этой мутации в генах и ВИЧ-инфекцией: люди, у которых было две копии мутантного гена CCR5, не заражались почти никогда. «Это был первый серьезный генетический эффект, который нам удалось обнаружить, — говорит О’Брайен. — И какой эффект!»
Если у лейкоцита нет CCR5-рецепторов, дверь внутрь него для вируса закрыта — скорее даже заложена кирпичом. В результате те, кто имеет в своем генотипе две копии мутантного гена, могут раз за разом сталкиваться с ВИЧ и не заражаться при этом. Те, у кого мутантный ген только один, производят меньше рецепторов CCR5: они могут заразиться ВИЧ, но полномасштабный СПИД у них наступает позже на два-три года.
Команда О’Брайена выяснила, кто является носителем мутации CCR5, и результат удивил ученых. В Европе эта мутация встречается относительно часто; около 20% населения имеют в своем генотипе одну или две копии мутантного гена. Сильнее всего эта мутация распространена в Швеции, а чем дальше на юг, тем реже она встречается. Среди греков, к примеру, ее носителей очень мало; среди жителей Центральной Азии — еще меньше. В остальной части мира она вообще не встречается.
Единственной причиной, по которой мутация CCR5 могла достичь такой частоты, мог быть тот факт, что для предков жителей Северной Европы она обладала какой-то ценностью; естественный отбор должен был подхватить полезную мутацию и способствовать ее распространению. «Селективное давление, похоже, было чудовищным, — говорит О’Брайен, — и в эту категорию укладывается только эпидемия какой-нибудь инфекционной болезни, которая убила тысячи, если не миллионы, людей и обошла носителей этой мутации».
Согласно выводам О’Брайена, событие, способствовавшее распространению мутации среди европейцев, — каким бы оно ни было, — произошло 700 лет назад. Возраст удалось определить по участкам ДНК вокруг мутантного гена. Со временем в молекуле ДНК накапливаются изменения, и О’Брайен воспользовался тем, что частота возникновения вариаций остается примерно постоянной во времени. Интересно другое: 700 лет назад в Европе действительно произошло событие, при котором естественный отбор работал очень активно. Это — великая эпидемия чумы, или Черная Смерть.
Черная Смерть, выкосившая в период с 1347 по 1350 г. более четверти европейцев, была всего лишь самой мощной в длинной череде эпидемий бубонной чумы, столетиями бушевавшей на континенте. Чума действовала на людей, как пестицид на насекомых: любые мутации, которые могли помочь человеку выжить, в следующих поколениях встречались значительно чаще. О’Брайен подозревает, что CCR5 как раз и была одной из таких благоприятных мутаций, и с каждой вспышкой чумы ее частота заметно подскакивала.
Бубонную чуму вызывает Yersinia pestis — бактерия, которая может жить в крысах, а к человеку попадает через укус блохи. Как и ВИЧ, Yersinia связывается с лейкоцитами крови. Никто в точности не знает, как именно проходит этот процесс. В настоящее время О’Брайен и его сотрудники пытаются это выяснить. Если его гипотеза верна, Yersinia тоже использует для этого рецептор CCR5. Те европейцы, кому повезло родиться без CCR5, утверждает он, не заражались Черной Смертью; сегодня некоторые из их потомков защищены от ВИЧ.
Если мутация CCR5 действительно обеспечивает защиту от бубонной чумы, то мы наблюдаем здесь случай самой настоящей экзаптации. Благодаря суровому естественному отбору во время Черной Смерти, некоторые европейцы сегодня, возможно, защищены от другого вируса, который использует те же клеточные рецепторы. Может быть, то, что эпидемия СПИДа в Африке и Юго-Восточной Азии носит гораздо более серьезный характер, чем в Европе и США, объясняется различной эволюционной историей этих континентов. О’Брайен надеется, что, опираясь на полезные свойства мутации CCR5, со временем можно будет разработать лекарство от ВИЧ. Если ученые-медики смогут изобрести препарат, который блокировал бы нормальные рецепторы CCR5, можно будет без всяких побочных эффектов создавать у людей иммунитет к ВИЧ.
Даже если эволюционные исследования О’Брайена, Хана и других ученых позволят создать лекарство от ВИЧ, проблемы на этом не закончатся. В будущем нас, скорее всего, ждут новые болезни, и разбираться с каждой придется заново. Эпидемия СПИДа пришла к нам от приматов в виде девяти разных лентивирусов, которые сумели перебраться с обезьян на человека. У приматов есть еще 24 известных лентивируса (все они родственны ВИЧ), которые, возможно, еще ждут своего часа. Современный мир, в котором богатство и роскошь тесно уживаются с нищетой, а межконтинентальные перелеты — с использованными внутривенными иглами, готов их принять.
Укротители чумы
Сегодня, когда человечеству приходится сталкиваться с таким множеством новых болезней, врачам, возможно, придется искать новые способы борьбы с паразитами. Одним из таких способов может стать их укрощение и даже приручение. Когда болезнетворный паразит попадает в тело хозяина, перед ним всегда стоит выбор. С одной стороны, он может сразу же приступить к бешеному размножению, питаться тканями хозяина и отравлять его отходами жизнедеятельности, пока тот не умрет. Несмотря на то, что при этом паразит успеет скопировать себя не один триллион раз, он рискует вымереть, если убьет хозяина прежде, чем сможет заразить нового. С другой стороны, он может подойти к делу более осторожно, размножаясь так медленно, что хозяева даже не замечают, что больны. Не исключено, что у такого паразита гораздо больше шансов передаться через вилку или рукопожатие — ведь его хозяин остается в живых достаточно долго, чтобы дать ему такую возможность. Но если рядом у него найдется более агрессивный собрат, способный к тому же размножаться быстрее, то наш умеренный паразит может не выдержать конкуренции.
Пол Эвальд, биолог из Колледжа Амхерста, изучает, как разные паразиты совершают этот выбор. Как правило, выясняется, что если паразиту для передачи нужен мобильный хозяин, то паразит будет деликатен. Риновирусы, вызывающие простуду, передаются только через чихание или прикосновение, так что им необходим относительно здоровый хозяин, способный общаться с другими людьми. «Так что нет ничего удивительного в том, что риновирусы принадлежат к самым мягким из всех известных нам вирусов, — говорит Эвальд. — Более того, насколько мы можем судить, никто и никогда не умирал от риновируса, чего нельзя сказать о подавляющем большинстве прочих болезнетворных организмов».
С другой стороны, если паразиту для попадания в нового хозяина прежний не нужен, он может себе позволить более жесткую стратегию. Малярию, к примеру, переносят комары, и порождаемая ей жестокая лихорадка часто укладывает больного в постель.
Эвальд отмечает, что не каждый патоген следует этому правилу. Оспа, к примеру, не имеет посредников для переноски и должна самостоятельно искать себе нового хозяина. Тем не менее это одна из самых смертельных болезней, известных человеку. Она может позволить себе быть вирулентной, потому что, в отличие от вирусов простуды и других мягких болезней, может долгое время — десятилетиями — существовать вне хозяина, дожидаясь, пока ее подхватит случайный человек. Попав в тело нового хозяина, она бешено размножается, пока не убьет его, а затем начинает ждать следующего шанса.
Все эти паразиты непрерывно эволюционируют в ответ на воздействие окружающей среды, и Эвальд предсказывает: если вдруг паразиту станет легче или тяжелее распространяться, он приспособится. Он даже проверил свои выводы на нескольких разных болезнях, в том числе холере. Холера выделяет в организм хозяина токсины, которые вызывают у того диарею и тем самым дают возможность паразиту покинуть тело. После этого другой человек может подхватить бактерию в туалете, и если он будет прикасаться к пище, то потом от этой пищи может заразиться еще кто-нибудь. С другой стороны, холера может распространиться, если канализационные стоки попадут в питьевую воду. Для первого пути распространения необходим относительно здоровый хозяин, который мог бы контактировать с другими людьми; для второго — лишь плохое водоснабжение. Согласно теории Эвальда, там, где заражение идет через питьевую воду, холера должна развиваться в направлении большей токсичности.
Свидетелем именно такого развития событий Эвальд стал в 1991 г. во время вспышки холеры в Южной Америке. «Холера пришла в Перу, а затем быстро, за пару лет, распространилась по всей Южной и Центральной Америке, — объясняет он. — Попадая в страны с хорошими источниками чистой воды, микроорганизмы становились более безвредными». Так, в Чили, где чистой воды достаточно, микроб эволюционировал в мягкую форму; в Эквадоре, где с водой значительно хуже, он стал более опасным.
Эвальд считает, что вместо того, чтобы пытаться уничтожить болезнь, мы могли бы попытаться в каком-то смысле приручить ее. Это не было бы первым случаем в истории, когда человек одомашнил своих естественных врагов. «Волки представляли опасность для человека на протяжении всей его эволюционной истории, — говорит Эвальд, — но есть волки, которые давно живут вместе с нами и эволюционировали в собак. Вместо того чтобы конкурировать с нами, они теперь помогают нам. Я думаю, что мы могли бы проделать то же самое с болезнетворными микробами».
«Одомашнить» паразитов не так сложно, как кажется на первый взгляд. К примеру, чтобы приручить Plasmodium, паразита, который вызывает малярию, достаточно, может быть, всего лишь натянуть на окна противомоскитные сетки. Комары не смогут свободно залетать в окна и соответственно не смогут укусить за одну ночь много людей; скорость распространения инфекции уменьшится. Если какая-то разновидность плазмодий «привыкла» убивать хозяев быстро, сетки на окнах поставят ее в эволюционно невыгодное положение — ведь хозяева будут умирать раньше, чем плазмодиев сможет заразить еще кого-нибудь. В конкурентной борьбе победят более мягкие разновидности, и люди станут реже умирать от малярии.
Там, где речь идет о болезнях, эволюция работала против нас тысячи лет. И все это время мы обуздывали их.
Данный текст является ознакомительным фрагментом.