Глава 2. Космическая мистерия

Глава 2. Космическая мистерия

Теперь, когда мы познакомились с величинами, имеющими отношение к нашей теме, и большими, и малыми, и со временем, и с пространством, мы должны в общих чертах описать то, что знаем о происхождении Вселенной, а также об образовании галактик и звезд, и наконец планет, составляющих нашу солнечную систему, так чтобы мы могли обрисовать условия, в которых зародилась жизнь на Земле или где-нибудь в другом месте космоса.

Если к проблеме происхождения жизни трудно подступиться, потому что она возникла так давно, то можно подумать, что возникновение Вселенной, которое, должно быть, произошло значительно раньше, окажется еще недоступнее для понимания. Это не совсем верно, потому что взаимодействия, необходимые для зарождения живой системы, составляют небольшой сложный ряд среди многих других возможных взаимодействий в очень неоднородной среде, тогда как во время первых этапов развития после Большого взрыва все было настолько тесно перемешано друг с другом, что в процессе большей частью преобладали именно общие принципы реакций. Вследствие чего, к разрешению этой проблемы подойти легче.

В основе почти всех последних дискуссий о происхождении Вселенной лежит теория Большого взрыва. Отсюда вытекает теоретическое обоснование, что на первом этапе, который мы обычно можем себе представить, вся материя во Вселенной должно быть занимала достаточно небольшой объем при необычайно высокой температуре. Этот первозданный болид очень быстро расширялся и, расширяясь, остывал. Стивен Вайнберг написал отличную книгу, где для широкого круга читателей в общих чертах описал тип реакций, которые, вероятнее, всего происходили в эти первые три минуты[2].

Представление о происходившем складывается на основе наших современных знаний об основных частицах материи и излучения, а также на довольно незначительном количестве экспериментальных фактов, таких как фон космического излучения, который сейчас наполняет собой все пространство, — слабый шорох создания, едва слышимый в радиотелескопы. Подобный воображаемый синтез не обязательно полностью достоверен. Вайнберг признается в возникающем иногда ощущении нереальности при его описании. Другие важные наблюдаемые факты, необходимые для построения теории, — это расширение Вселенной, его доказывает известное красное смещение, а также огромный избыток в современной Вселенной частиц электромагнитного излучения (фотонов) по сравнению с частицами материи (барионами), соотношение примерно 109 (миллиард) к единице, и кроме того, относительно редко встречаются более тяжелые элементы. Считается, что даже в современной Вселенной девяносто девять процентов атомов состоят из двух самых легких элементов, водорода и гелия, причем первый встречается чаще. На основании всех этих фактов физики-теоретики смогли сделать вывод, что спустя первую одну сотую долю секунды (и эта цифра даже еще менее точна), болид превратился в сложную смесь излучения и материи, быстро и сильно взаимодействующих друг с другом при необычайно высокой температуре, примерно 1011 градусов, и стал чрезвычайно быстро расширяться. Эта температура была слишком высокой для существования атомов и даже слишком высокой для предотвращения распада сложных ядер (плотных центров атомов). По мере своего расширения болид охлаждался, пройдя в быстрой последовательности через несколько этапов, в ходе которых, вследствие снижения температуры на каждом этапе, по сравнению с предыдущим, определенные процессы происходили реже, другие же стали более распространенными. В конечном счете, примерно через три минуты температура снизилась не более чем до 109 градусов, так что теперь без угрозы распада могли образовываться некоторые очень легкие ядра, такие как ядра трития и гелия. Через полчаса или около этого температура упала до 3 х 108 (300 миллионов) градусов (только в двадцать раз выше, чем внутри Солнца), и синтез новых ядер прекратился. В течение следующих миллионов лет (или около этого) Вселенная продолжала расширяться и остывать, до тех пор, пока ядра не стали захватывать электроны для образования устойчивых атомов. Тогда материя смогла начать сгущаться, превращаясь в галактики и звезды.

Вследствие этого огромного космического взрыва. Вселенная с тех пор начала расширяться. Будет ли она расширяться до бесконечности, или, в конечном счете, это расширение замедлится и полностью прекратится, и она вернется к исходному состоянию, зависит исключительно от степени ее массивности. Точно также как камень, подброшенный высоко в воздух, упадет обратно на Землю, если его скорость не окажется так велика, что он сможет этого избежать, так и Вселенная продолжит расширяться до тех пор, пока ее масса не увеличится настолько, что, в конце концов, под действием силы тяжести расширение прекратится и начнется обратный процесс. Если это так, то некоторое время спустя, в очень далеком будущем, Вселенная начнет сжиматься и произойдет еще одна катастрофа. Прежде считалось, что рассчитанная плотность Вселенной слишком мала для этого, критическая плотность соответствует примерно трем атомам водорода в каждом литре пространства. А сейчас существует предположение, что маленькие нейтральные частицы, нейтрино, которыми заполнено все пространство, вероятно, могут иметь некоторую, но очень маленькую массу, хотя прежде считалось, что они, подобно свету, невесомые. Если это так, то их может оказаться вполне достаточно, чтобы навсегда остановить расширение Вселенной.

Возможно, самый важный вывод, сделанный на основании нашей весьма ограниченной точки зрения, заключается в том, что на ранних этапах развития Вселенной, несмотря на очень высокую плотность и температуру, в каких бы то ни было значительных количествах образовались только немногие очень легкие элементы. Следовательно, за исключением водорода, все элементы, необходимые для жизни, еще должны были появиться, в частности: углерод, азот, кислород и фосфор. Этот вывод подтверждается с помощью спектроскопических наблюдений, которые доказывают, что на старейших звездах этих элементов намного меньше, чем на новых.

Обстоятельства дальнейшего развития спустя один миллион лет отчасти неясны. Как именно растущий болид, который предположительно должен был быть в пространственном отношении довольно однородным, расширялся еще дальше, чтобы образовать большие неоднородные скопления материи, которые мы наблюдаем в виде галактик, и как именно были образованы различные типы звезд — на все эти вопросы все еще нет достаточно обстоятельного ответа, хотя мы можем кратко и в общих чертах описать некоторые процессы.

Несмотря на то, что на ранних этапах развития Вселенной сила тяжести играла незначительную роль, теперь она стала приобретать ключевое значение. Мы можем видеть, что, в значительной степени благодаря силе тяжести, начинают образовываться массы материи, которые притягивают другие массы, до тех пор, пока, в конечном счете, не возникают еще более крупные скопления. Вызванные этим разрастанием и уплотнением столкновения повысят местную температуру до тех пор, пока масса не накалится до такой степени, что начнет светиться. В конечном итоге, более крупные куски материи достигнут такой высокой температуры, что начнут происходить ядерные реакции — образуется новая звезда.

С этого момента теплота, созданная ядерным синтезом, будет препятствовать сжатию звезды, так как если оно происходит, то звезда нагреется, ядерные реакции ускорятся, и в результате возрастающее давление заставит звезду немного расшириться, чтобы нейтрализовать начинающее сжатие. Этот механизм работает как регулятор, который позволяет звезде благополучно «гореть» в течение миллионов или даже миллиардов лет.

В конце концов, у звезды должно истощиться ядерное топливо. Расчеты показывают, что большие звезды сгорают очень быстро, звезды средней величины (как Солнце) — медленнее, а небольшие звезды — очень и очень медленно. Звезда, в десять раз массивнее Солнца, вырабатывает свое топливо в сто раз быстрее. Что происходит, когда начинает истощаться ядерное топливо, — достаточно сложный вопрос, и ответ на него во многом зависит от массы звезды. Процесс ядерного синтеза может создать элементы, такие как углерод и азот, из водорода и гелия. Затем звезда может попытаться использовать эти более тяжелые элементы в качестве топлива, создавая при этом еще более тяжелые, но, в конечном итоге, наступает этап, когда не остается больше элементов, ядерные превращения которых могут обеспечить ее достаточной энергией. В этот момент всеобъемлющая сила тяжести, которая сдерживалась теплотой, порождаемой ядерными процессами, одерживает верх. Звезда сжимается. Как именно это происходит, опять зависит от размера звезды и характера элементов ее составляющих. Звезды меньших размеров, вероятно, становятся белыми карликами и очень, очень медленно исчезают из виду. У более крупных звезд сжатие может быть таким быстрым, что звезда буквально взрывается, извергая до половины своего содержимого в космос и рассеивая материю с высокой скоростью во всех направлениях. Во время самого взрыва создаются многие элементы тяжелее железа (которые не очень многочисленны).

Такой катастрофический взрыв называется сверхновой звездой. В течение нескольких дней звезда светится необычайно ярко. Когда это случилось со звездой в нашей галактике в 1604 году, то это явление вызвало сенсацию. Мы до сих пор можем наблюдать остатки сверхновой звезды, ее предшественницы, наблюдаемой китайскими астрономами в 1054 году. Это большое облако светящегося газа, которое мы называем Крабовой туманностью, все еще очень быстро расширяется, и мы можем даже видеть остаток звезды, теперь пульсар (вращающаяся нейтронная звезда), в ее центре.

Именно взрывы, подобные этим, оказались основным источником большинства элементов в нашем теле (за исключением водорода). Осознание того, что многие из атомов, из которых созданы мы сами, образовались не в начале мироздания, а должны были подвергнуться действию тепла внутри звезды и быть выброшенными в космос, создает странное ощущение.

Как же в таком случае образовались планеты? Подробнее этот вопрос рассмотрен в главе 8. Здесь мы только в общих чертах опишем этот процесс. Когда мы рассматриваем в телескопы сложности нашей галактики, то можем увидеть, что многое в ней закрыто большими облаками газа и пыли, некоторые из них более рассеянные, некоторые менее, но все они, по земным меркам, очень разрежены. Частицы пыли, примерно такого же размера, что и частицы сигаретного дыма, вероятно, образованы из смеси маленьких кусочков железа, камня, льда и соединений углерода. Довольно удивительно, но в этих газовых облаках были обнаружены более пятидесяти видов плавающих малых органических молекул, особенно в более плотных облаках (где меньше ультрафиолетового света, их разрушающего), хотя в массе они в итоге составляют только около одной миллионной доли. Это химически активные молекулы, такие как цианистый водород (HCN) и формальдегид (HCHO). Какая именно часть этого огромного количества очень слабых молекул, рассеянных в пространстве, сыграла свою роль в происхождении жизни, точно неизвестно, но, скорее всего, их непосредственное участие было не слишком значительным. Мелкие молекулы, которые образуют основу жизни (см. главу 3, а также главу 5) — аминокислоты, сахарозы, основания, и т. д. — все же там не обнаружены, хотя некоторые из них можно было бы довольно легко синтезировать из тех, что встречаются в космосе. Есть некоторые предположения относительно реакций, которые могут происходить в кометах и других небольших телах Солнечной системы.

Считается, что Солнце и окружающие его планеты образовались в результате уплотнения, возникшего благодаря силе тяжести, медленно вращающегося такого облака. Как именно это произошло, все еще спорный вопрос. Грубо говоря, по мере сжатия облака скорость его вращения возрастала (чтобы сохранить момент количества движения), так что оно вытянулось в форму диска. Центр этого диска со временем стал Солнцем, тогда как оставшиеся куски материи уплотнились и образовали планеты и астероиды. Подробнее этот процесс рассмотрен в главе 8.

Большая часть этого облака, должно быть, состояла из водорода и гелия, так как эти элементы наиболее распространены на Солнце, но планета типа Земли находится слишком близко к Солнцу и в то же время не так массивна, чтобы удержать такие легкие элементы силой своего относительно слабого гравитационного поля, поэтому, вероятно, что они затерялись в космосе. (На крупных внешних планетах их все еще очень много.) Земля же со своим внутренним ядром из железа и твердой оболочкой из более легких элементов, находящихся вблизи поверхности, образовалась из скопления пепла существовавших когда-то звезд. Биосфера, в которой мы живем, — это хрупкий слой материи на поверхности довольно малой планеты звезды весьма средней величины.

Наиболее важный момент, который вытекает из этого краткого описания, заключается в том, что жизнь, насколько нам известно, вероятно, не могла зародиться вскоре после Большого взрыва, потому что необходимых элементов для ее возникновения тогда не существовало. Потребовался период в один или два миллиарда лет, возможно, больше, прежде чем достаточное количество крупных звезд завершили свой жизненный цикл и взорвались, предоставив тем самым атомы, необходимые для создания органической жизни. Затем они должны были рассеяться, чтобы из осколков образовались новые звезды и планеты. К сожалению, мы точно не знаем, насколько естественней этот процесс, поэтому мы не можем быть уверены, исходя из теоретических предпосылок, у какого количества звезд могут быть планеты, вращающиеся вокруг них, хотя, как мы увидим в главе 8, этому есть некоторые косвенные подтверждения.

Давайте теперь кратко перечислим те размеры и периоды времени, которые нас интересуют. Диаметр Солнечной системы — около одной пятнадцатой светового года. Ближайшая звезда находится на удалении 4,3 световых лет. В пределах двадцати световых лет находятся примерно сто звезд. Наша собственная галактика — это медленно вращающийся неправильный диск, состоящий из звезд, пыли и газа, примерно 100000 световых лет в диаметре, содержащий, вероятно, 1011 звезд. Ближайшая крупная галактика — Андромеда, несколько больше нашей. Она находится на удалении двух миллионов световых лет, между ними почти ничего нет (за исключением нейтрино и фотонов), хотя в непосредственной близости находятся несколько галактик меньшей величины. За ее пределами Вселенная расширяется во всех направлениях на расстояние, по крайней мере, в три миллиарда световых лет, и, может быть, содержит общее число галактик 1011 различных типов и размеров.

Возраст Земли и остальной Солнечной системы составляет примерно 4,5 миллиардов лет. Время, которое прошло со времени Большого взрыва, известно с меньшей точностью, но, вероятно, находится в пределах от семи до пятнадцати миллиардов лет. Вскоре после Большого взрыва практически не существовало тяжелых элементов, значительное их количество образовалось через миллиард (или около этого) лет после него.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

Глава 6 Кундалини: спящая космическая энергия внутри человека

Из книги Пранаяма. Сознательный способ дыхания. автора Гупта Ранджит Сен

Глава 6 Кундалини: спящая космическая энергия внутри человека Основная сущность пранаямы – это очищение Нади, чувствительных нервов в нашем астральном теле, заряжаемых потоком праны. В терминах науки о физиологии дыхания это может быть истолковано как функция


Глава I

Из книги Аналогия автора Медников Борис Михайлович

Глава I Восемь лет назад я написал небольшую книгу «Аксиомы биологии»[1], в конце которой высказал предположение, что возможно создание общей теории эволюции последовательно реплицирующихся систем. Завершил я книгу словами: «Под эту категорию попадают не только объекты


Какое свойство Япета, спутника Сатурна, стало одной из основ знаменитого романа Артура Кларка «Космическая одиссея 2001 года»?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович


ГЛАВА I

Из книги Новая система земледелия автора Овсинский Иван Евгеньевич

ГЛАВА I Задачи обработки земли.Обработка земли преследует две главные, на первый взгляд противоположные, цели: во-первых, она должна стремиться создать такое соотношение благоприятствующих росту растений условий, при котором можно было бы получить самую богатую


ГЛАВА II

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

ГЛАВА II Самостоятельность растений по отношению к земледелию. Среди наших земледельцев вплоть до сего времени господствует убеждение, что для получения хорошего урожая достаточно только позаботиться, чтобы почва содержала необходимое количество питательных веществ и


ГЛАВА III.

Из книги Путешествие в страну микробов автора Бетина Владимир

ГЛАВА III. Задачи и план настоящего труда. Уже десять с лишним лет при обработке земли я руководствуюсь принципом, что самый верхний слой почвы надо оставлять на поверхности для того, чтобы он обогатился перегноем. Это имеет большое значение, так как дает возможность


ГЛАВА VI.

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

ГЛАВА VI. Источники питания растений: атмосфера и почва.Из перечисленных в предыдущей главе питательных для растений веществ меньшая часть находится в атмосфере, большая — в почве.Атмосфера состоит из газов, среди которых находятся твердые тела в пылеобразном состоянии


ГЛАВА IX.

Из книги Внутренняя рыба [История человеческого тела с древнейших времен до наших дней] автора Шубин Нил

ГЛАВА IX. Углекислота в почве.Многие ученые объясняют богатую растительность древних времен тем, что тогда атмосфера содержала больше кислоты, чем теперь. Поэтому-то Либих был того мнения, что и в настоящее время, если желаем получить самый обильный урожай наших


2.5. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосин

Из книги Клематисы автора Бескаравайная Маргарита Алексеевна


Космическая микробиология

Из книги автора

Космическая микробиология Наша эпоха получила много наименований, связанных с успехами естественных наук. Говорят об «атомном веке», «эре антибиотиков», «эпохе кибернетики». В последнее время начинают говорить и о «космическом веке». Без преувеличения можно сказать,


Какое свойство Япета, спутника Сатурна, стало одной из основ знаменитого романа Артура Кларка «Космическая одиссея 2001 года»?

Из книги автора

Какое свойство Япета, спутника Сатурна, стало одной из основ знаменитого романа Артура Кларка «Космическая одиссея 2001 года»? Уникальная особенность Япета, третьего по величине спутника Сатурна, состоит в том, что одно его полушарие на порядок (приблизительно в 10 раз)


Глава 10. Уши{10}

Из книги автора

Глава 10. Уши{10} Того, кто заглянет поглубже в ухо, чтобы увидеть, как устроен наш орган слуха, ждет разочарование. Самые интересные структуры этого аппарата скрыты глубоко внутри черепа, за костяной стенкой. Добраться до этих структур можно только вскрыв череп, удалив мозг,


Космическая Мелодия

Из книги автора

Космическая Мелодия Космическая Мелодия (Kosmicheskaia Melodiia). Группа Жакмана.А. Н. Волосенко-Валенис, М. А. Бескаравайная. 1965 г.Назван в честь полета космонавтов А. Николаева и В. Севастьянова в космос в июне 1970 г. Выращивается в других странах, например, в Англии, Латвии.Цветки


Глава 2. ДНК

Из книги автора

Глава 2. ДНК На стене паба “Орел” в Кембридже висит синяя мемориальная доска, установленная в 2003 году в честь пятидесятилетия одного случая, когда разговоры в этом пабе приняли не совсем обычный оборот. Во время обеда 28 февраля 1953 года два завсегдатая “Орла”, Джеймс