Глава 8 Видеть – значит верить

We use cookies. Read the Privacy and Cookie Policy

Глава 8

Видеть – значит верить

Обоняние дразнит аппетит, слух помогает спасти отношения с партнером, а зрение – это вера. Органы чувств говорят нам, что реально, а что нет, и в этом мы больше всего полагаемся именно на глаза. Что это – биологическая случайность, просто попутный результат эволюции наших органов чувств и мозга? Если бы собака могла делиться с нами своими мыслями не только лая или помахивая хвостом, она бы, возможно, заявила: «Нюхать – значит верить». А когда летучая мышь завтракает насекомым, поймав его во мраке благодаря эху его ультразвуковых поскрипываний, она наверняка думает: «Слышать – значит верить». Так или нет?

А может быть, то предпочтение, которое мы отдаем зрению, коренится не в биологии, а глубже, в законах физики? Прямые линии лучей, должным образом преломленные хрусталиком глаза, передают пространственные взаимоотношения между частями воспринимаемого объекта. К тому же в зрительных образах содержится столько информации, что ими не так-то просто манипулировать, к примеру, для создания фальшивок. (Во всяком случае, так было до эпохи компьютеров.)

Как бы там ни было, зрение всегда играло центральную роль в наших верованиях и убеждениях. В житиях многих христианских святых описывается, как божественные видения (апокалиптические или вполне мирные) нередко обращали язычников в верующих. В отличие от религии наука должна применять методы, основанные на четких формулировках и эмпирической проверке гипотез. Но и науку могут подталкивать вперед визуальные откровения – внезапные и простые картины чего-то удивительного. Иногда научный поиск сводится к тому, чтобы суметь увидеть.

В этой главе я расскажу об инструментах, которые создали нейробиологи, чтобы приподнять покров скрытой реальности. Возможно, это покажется вам ненужным отступлением от нашей главной темы – мозга. Но я надеюсь убедить вас в обратном. Военные историки смакуют хитроумные тактические ходы, придуманные гениальными полководцами, однако в исторической перспективе понятно, что куда важнее в военном деле оказываются технические новшества. Изобретение огнестрельного оружия, истребителя и атомной бомбы – все это каждый раз полностью меняло лицо войны.

Вот и историки науки превозносят великих ученых и их революционные открытия, при этом гораздо меньше славят создателей научных приборов, хотя влияние этих изобретений на развитие знания порой бывает не менее существенным. Многие из важнейших научных открытий явились прямым следствием таких изобретений. Так, в XVII веке Галилео Галилей усовершенствовал телескоп, сделав увеличение из трехкратного тридцатикратным. Наведя это оптическое устройство на Юпитер, он обнаружил вращающиеся вокруг него спутники, что перевернуло традиционные представления, согласно которым все небесные тела вращаются вокруг Земли.

В 1912 году физик Уильям Лоренс Брэгг продемонстрировал, как применять рентгеновские лучи для того, чтобы определять положение атомов в кристаллической решетке, а три года спустя, в двадцатипятилетнем возрасте, он получил за свою работу Нобелевскую премию[13]. Позже именно рентгеновская кристаллография позволила Розалинд Франклин, Джеймсу Уотсону и Фрэнсису Крику открыть структуру ДНК, знаменитую двойную спираль.

Слышали анекдот про двух экономистов, идущих по улице? «Гляди-ка, вон на тротуаре валяется двадцатка!» – восклицает один. «Не будь дураком, – отвечает другой, – если бы там и правда лежали двадцать баксов, кто-нибудь давно бы их подобрал». Эта шутка обыгрывает так называемую гипотезу эффективности рынка (ГЭР), довольно спорную систему взглядов, согласно которой не существует справедливого и надежного метода инвестирования, который позволил бы получить прибыль выше среднерыночной. (Не отвлекайтесь, вы скоро увидите связь с нашей темой.) Разумеется, существуют ненадежные способы превысить среднерыночную прибыль. Углядев в новостях материал о какой-то компании, можно накупить ее акций и потом радоваться, когда они пойдут вверх. Но вероятность этого – не выше, чем вероятность под утро уйти из ласвегасского казино с выигрышем. А еще есть нечестные способы обогнать рынок. Скажем, если вы работаете в фармацевтической фирме, не исключено, что вы первым узнаете: такое-то лекарство успешно прошло клинические испытания. Но если вы купите акции своей компании на основе таких недоступных широкой публике сведений, вас могут привлечь к суду по обвинению в корыстном использовании инсайдерской информации.

Ни те, ни другие методы не подходят под критерии ГЭР, подразумевающие справедливость и надежность. Можно предположить даже, что таких методов вовсе не существует. Профессиональные инвесторы ненавидят такие заявления, предпочитая думать, что они преуспевают благодаря собственной сметливости. Но ГЭР уверяет: либо им повезло, либо они, скажем уж прямо, оказались не очень-то чистоплотны в делах.

Эмпирические доводы за и против ГЭР многообразны и сложны, но ее теоретическое обоснование достаточно просто. Если новая информация указывает на то, что акции поднимутся в цене, то первые же инвесторы, узнавшие эти сведения, волей-неволей создадут на рынке ситуацию, когда эти акции будут продаваться дороже. А следовательно, заключает ГЭР, на рынке попросту не останется выгодных инвестиционных возможностей, точно так же, как вы никогда (ну, почти никогда) не увидите двадцатидолларовую бумажку, спокойно валяющуюся на тротуаре.

При чем же тут нейронаука? Вот вам еще один анекдот. «Слушай, я тут придумал гениальный эксперимент!» – говорит один ученый другому. «Не будь идиотом, – отвечает тот. – Если бы такой эксперимент можно было провести, кто-нибудь уже давно бы это сделал». В этом диалоге есть доля истины. Научный мир полон умных и трудолюбивых людей. Гениальные эксперименты, как и двадцатидолларовые банкноты, на дороге не валяются. Вокруг рыщет масса ученых, и почти все из возможных гениальных экспериментов уже проведены. Я даже готов предложить гипотезу эффективности науки (ГЭН): не существует справедливого и надежного научного метода, который позволил бы превзойти средние результаты в науке.

Как же ученым удается совершать по-настоящему великие открытия? Александр Флеминг открыл пенициллин (и дал ему название) после того, как обнаружил, что одна из бактериальных культур в его лаборатории случайно оказалась зараженной плесневым грибком, вырабатывающим этот антибиотик. Революционные прорывы такого рода – во многом плод счастливого стечения обстоятельств. Если вы ищете более надежный метод, поищите в области «нечестного». И тут вам помогут технологии наблюдения и измерения.

Прослышав, что в Голландии изобрели телескоп, Галилей быстренько смастерил собственный. Он экспериментировал с различными линзами, научился самостоятельно шлифовать стекло и в конце концов стал конструировать лучшие телескопы в тогдашнем мире. Эта деятельность позволила ему занять уникальное положение, благодаря которому он мог совершать астрономические открытия эффективнее, чем коллеги: ведь у него появилась возможность изучать небосвод с помощью прибора, которого у них не было. Если вы – ученый, покупающий необходимые для работы приборы, вы можете обойти своих конкурентов, добиваясь большего финансирования, чем они. Но еще сильнее вы их обгоните, если сами сконструируете прибор, который не купить ни за какие деньги.

Допустим, вы придумали гениальный эксперимент. Как узнать, осуществил его уже кто-нибудь или нет? Справьтесь в литературе. Если никто его не делал, лучше хорошенько подумать, отчего это так. Может быть, это не такая уж и гениальная идея. А может быть, его не проводили лишь потому, что тогда не существовало нужных технологий. И если вам посчастливится получить доступ к соответствующей аппаратуре, то вы, быть может, сумеете провести этот эксперимент первым в истории.

Моя гипотеза эффективности науки объясняет, почему некоторые ученые проводят основную часть времени, разрабатывая новые технологии, а не полагаясь на те, которые они могут приобрести за деньги. Таким путем они пытаются добиться «нечестного преимущества». В своем трактате «Новый органон» (1620) Фрэнсис Бэкон писал:

Было бы неразумной фантазией утверждать, будто нечто такое, что еще никогда не совершалось, может быть совершено без помощи средств, каковые еще не были никогда испробованы.

В таком утверждении кроется противоречие.

Я бы усилил эту максиму:

Стоящие вещи, которых пока никто не сделал, можно сделать лишь с помощью средств, которые пока не существуют.

Именно в период возникновения таких новых средств – когда изобретаются новые технологии – мы наблюдаем революционные скачки в науке.

Чтобы находить коннектомы, нам нужно создать устройства, позволяющие получать четкие изображения нейронов и синапсов в обширном поле зрения. Это откроет новую главу в истории нейронауки, которую, быть может, лучше рассматривать не как ряд великих идей, а как череду великих открытий, каждое из которых позволяло перескочить некогда считавшийся непреодолимым барьер, мешавший наблюдать те или иные свойства мозга. Сегодня утверждение, что мозг состоит из нейронов, кажется банальным, однако путь к этой идее оказался весьма тернист. По элементарной причине – долгое время нейроны попросту не удавалось разглядеть.

* * *

В 1677 году Антони ван Левенгук, голландский купец, торговавший сукном, а позже ставший ученым, первым в мире увидел живой сперматозоид. Левенгук, совершив свое открытие с помощью самодельного микроскопа, не до конца осознал его важность: он не доказал, что именно сперматозоиды (а не семенная жидкость, в которой они плавают) являются репродуктивными агентами. И он понятия не имел о процессе оплодотворения, в ходе которого соединяются яйцеклетка и сперматозоид. Однако Левенгук вымостил путь для своих последователей, и в этом смысле его работа знаменует собой начало новой эпохи в науке.

Три года спустя Левенгук рассматривал в свой микроскоп каплю озерной воды. Он увидел движущиеся в ней крошечные объекты и решил, что они живые. Ученый нарек их анималькулами («маленькими зверьками») и написал о них в лондонское Королевское научное общество. Ныне мы привыкли к мысли о существовании микроорганизмов, и нам трудно вообразить, как потрясли они современников великого голландца. В то время сообщения Левенгука сочли столь фантастическими, что его даже заподозрили в фальсификации научных результатов. Чтобы развеять эти опасения, он направил в Королевское научное общество письма с «показаниями» восьми свидетелей, в том числе трех священников, адвоката и врача. Спустя несколько лет его открытие наконец признали, а затем Левенгук был удостоен высокой чести – он стал членом Королевского общества.

Иногда Левенгука именуют отцом микробиологии. В XIX веке эта область науки приобрела громадное практическое значение: именно тогда Луи Пастер и Роберт Кох продемонстрировали, что микробы могут служить причиной болезней. Микробиология, в свою очередь, сыграла решающую роль в развитии клеточной теории, краеугольного камня современной биологии. Согласно основным положениям этой теории, сформулированным еще в XIX столетии, все организмы состоят из клеток. Микроорганизмы же состоят всего из одной клетки.

Большинство членов Королевского научного общества обладали неплохим достатком и потому – досугом для интеллектуальных занятий. Левенгук родился в небогатом семействе, но к сорока годам он уже имел достаточно большой доход, чтобы уделять время науке. Он не учился в университете, не знал ни латыни, ни греческого. Каким же образом этот самоучка скромного происхождения достиг столь многого?

Левенгук не изобретал микроскопа: эта честь принадлежит мастерам-оптикам, трудившимся в конце XVI века. Как и современные микроскопы, первые такие приборы являлись, по сути, комбинацией многочисленных линз, но давали увеличение всего в 20–50 раз. Между тем устройства Левенгука десятикратно улучшили этот показатель с помощью всего одной линзы, но очень мощной. Мы толком не знаем, как он научился делать такие замечательные линзы: голландец хранил свои методы в секрете. Это и было «несправедливым преимуществом» Левенгука: он делал микроскопы лучше, чем его коллеги и конкуренты.

Со смертью Левенгука его методы оказались утрачены. Позже, уже в XVIII столетии, благодаря техническим усовершенствованиям удалось сконструировать многолинзовый («комбинированный») микроскоп мощнее левенгуковского. Ученые смогли подробнее разглядеть строение растительных и животных тканей, что привело к повсеместному признанию клеточной теории в XIX веке. Однако эта теория начинала буксовать, когда ученые пытались описать с ее помощью мозг. Микроскописты могли увидеть тела нейронов и ветви, которые тянутся между ними. Но уже на небольшом расстоянии от тела клетки они теряли следы отдельных отростков, видя лишь плотную мешанину ветвей. Никто не знал, что происходит там, вдали от тела нейронной клетки.

Проблему помогло решить еще одно революционное открытие. Его совершил во второй половине XIX века итальянский врач Камилло Гольджи. Он разработал особый метод окрашивания мозговой ткани, благодаря которому удавалось пометить небольшое количество нейронов: при этом основная их часть оставалась неокрашенной и, следовательно, как бы невидимой для исследователя. Рис. 26 может показаться вам слишком «перенаселенным», однако на нем все-таки видны очертания лишь отдельных нейронов. Научный соперник Гольджи, итальянский нейроанатом Сантьяго Рамон-и-Кахаль, наверняка наблюдал что-то такое в собственный микроскоп, когда рисовал картинку, показанную на рис. 1.

Метод, разработанный Гольджи, необычайно продвинул науку вперед. Чтобы оценить это продвижение, давайте представим себе, что ветви нейронов – это переплетенные спагетти. (Я уже предлагал такое сравнение, но сейчас оно кажется особенно уместным, если учесть итальянское происхождение нашего изобретателя.) Повар, страдающий сильной близорукостью, увидит на тарелке лишь сплошную желтую массу, отдельные макаронные нити будут расплываться у него перед глазами, и он не сумеет их различить. А теперь представьте, что среди этих нитей затесалась одна темная (рис. 27, слева). Даже при слабом зрении вы сумеете проследить ее путь (рис. 27, справа).

Рис. 26. Нейроны коры головного мозга обезьяны, окрашенные по методу Гольджи

Как изобретение микроскоп смотрится шикарнее каких-то там методов окрашиваний и пятен. Его металлические и стеклянные детали впечатляют, этот прибор можно конструировать с учетом законов оптики. А на пятно не стоит и глядеть, оно наверняка и пахнет-то скверно. Пятна обнаруживают скорее случайно, чем путем планомерной работы. Мы ведь даже не знаем, почему при окрашевании методом Гольджи выявляется лишь небольшая доля нейронов. Мы знаем лишь, что метод Гольджи эффективен. Как бы там ни было, окрашивание по методу Гольджи и другие сходные процедуры сыграли важную роль в истории нейронауки. «Мозг понятен, когда в нем много темных пятен», – шутят нейроанатомы. Просто пятна Гольджи стали наиболее известными.

Рис. 27. Пример эффективности окрашивания по методу Гольджи: спагетти до (слева) и после (справа) оптического размывания

Развитие науки может надолго затормозиться, если нет соответствующей технологии. Без нужной информации научный прогресс невозможен, и неважно, сколько умников работает над решением проблемы. В XIX веке долго тщились по-настоящему разглядеть нейроны, и наконец Гольджи разработал свой метод, который вскоре начал весьма охотно использовать не кто иной, как Кахаль. В 1906 году Гольджи с Кахалем съездили в Стокгольм за Нобелевской премией «за работу по выявлению строения нервной системы». Следуя традиции, оба прочли короткие лекции, где описывались их исследования. Но в ходе этих лекций они предпочли не радоваться общей награде, а обрушиться с нападками друг на друга.

До этого между ними долго кипела жаркая дискуссия. Окрашивание по методу Гольджи наконец-то явило миру нейроны, однако сравнительно небольшая разрешающая способность тогдашних микроскопов все-таки оставляла место для сомнений и неоднозначных трактовок. Заглянув в свой микроскоп, Кахаль увидел точки, в которых два нейрона контактировали друг с другом, оставаясь разделенными. А когда Гольджи посмотрел в свой микроскоп, ему показалось, что в таких точках нейроны сливаются воедино, образуя сплошную сеть, что-то вроде гигантской клетки.

К 1906 году Кахаль убедил многих коллег, что между такими нейронами все-таки есть просветы, однако по-прежнему оставалось неясным, как же нейроны умудряются передавать друг другу сигналы, если они не соединены физически. Три десятилетия спустя Отто Лёви и Генри Дейл получили Нобелевскую премию «за открытия, связанные с химической передачей нервных импульсов». Они обнаружили убедительные доказательства того, что нейроны могут отправлять друг другу сигналы путем выработки молекул нейротрансмиттеров и получать сигналы, детектируя нейротрансмиттеры. Эта идея химического синапса объясняла, каким образом двум нейронам удается общаться через узкий просвет.

Но сам-то синапс тогда еще никто не видел! В 1933 году немецкий физик Эрнст Руска сконструировал первый в истории электронный микроскоп. В этом приборе вместо луча света использовался поток электронов, что позволяло получать гораздо более четкое и резкое изображение. Руска перешел на работу в компанию Siemens и запустил свое изобретение в массовое производство. После Второй мировой войны популярность его детища только возросла. Биологи научились рассекать образцы на чрезвычайно тонкие слои, а затем помещали их под электронный микроскоп. Наконец-то они увидели четкое и ясное изображение.

Первые изображения синапсов, полученные в 1950-х годах, показали, что два нейрона все-таки не «сливаются» в синапсе: две нервные клетки разделены четкой границей, иногда можно различить даже узенький просвет между ними. Оптический (световой) микроскоп не позволял разглядеть такие детали, вот почему Гольджи с Кахалем так и не смогли разрешить свой спор при жизни.

С учетом этих новых сведений можно посмертно присудить победу Кахалю. Впрочем, не совсем так. Ведь Гольджи в конечном счете тоже оказался прав. Как я уже говорил, помимо химических синапсов, мозг содержит и электрические. В синапсе этого типа щель между двумя мембранами соседних нейронов пронизана особыми ионными каналами, по которым ионы (заряженные частицы) могут перемещаться из внутренней части одного нейрона во внутреннюю часть другого. Такой синапс передает электрические сигналы между нейронами напрямую, ему не нужен химический сигнал-посредник. По сути, он объединяет две клетки в одну большую, как и представлял Гольджи.

Рис. 28. Поперечное сечение аксонов и дендритов под электронным микроскопом до (слева) и после (справа) оптического размывания

Я расхваливал электронный микроскоп как изобретение, позволившее получить изображение синапсов. Однако новые методы окрашивания тоже оказались важны. С появлением электронной микроскопии понадобились методы массированного окрашивания, при которых помечаются все нейроны. Комбинация электронного микроскопа и таких методов массированного окрашивания дала нейробиологам возможность воочию увидеть то, что они давно себе представляли, но до сих пор не могли пронаблюдать: переплетение ветвей множества нейронов. Окрашивание по Гольджи демонстрирует форму нейрона, однако создает ложное впечатление, будто нейроны – острова, плавающие в пустоте. На самом же деле ткань мозга буквально набита нейронами и их отростками (рис. 28, слева). Эта картинка подобна той, которую можно увидеть, разрезав комок спутанных макарон. Их отдельные волокна окажутся круглыми или овальными в разрезе – подобно нейронным отросткам на снимке.

Законы физики ограничивают разрешающую способность оптического микроскопа длиной волны света, которая составляет доли микрона. Более мелкие детали будут выглядеть размыто: это проявление так называемого дифракционного барьера. На рис. 28, справа, показан искусственно размытый вариант изображения, полученного с помощью электронного микроскопа. Так объект выглядел бы в оптическом микроскопе. Поперечные сечения самых тонких отростков нейронов не удавалось бы четко разглядеть. Вот почему метод фрагментарного окрашивания, метод Гольджи, когда помечается лишь небольшая доля нейронов, оказался необходим при использовании оптического микроскопа. Электронный микроскоп обладает гораздо более высокой разрешающей способностью, что позволяет одновременно видеть все нейроны образца, пометив их методом массированного окрашивания.

Но электронный микроскоп дает нам лишь двухмерное изображение поперечных сечений нейронов. Чтобы увидеть их во всей красе, нужна трехмерная картинка. Ее можно получить, разрезав мозговую ткань на тонкие ломти, как колбасу, и снять изображение каждого ломтика. Может показаться, что такое разрезание – элементарная задача, однако каждый слой должен быть в десятки тысяч раз тоньше кусочка самой изысканной ветчинной нарезки. Для этого потребуется весьма необычный нож.

* * *

Я всегда питал слабость к ножам. Еще в первые скаутские годы я заполучил свой первый карманный ножик, дешевенький, с двумя лезвиями, которые быстро потускнели. Мальчишка постарше как-то раз показал мне свой швейцарский армейский нож с ярко-красной ручкой, ощетинившийся множеством разнообразных сверкающих лезвий и прочих инструментов. Конечно, меня одолела зависть. Ныне я предпочитаю немецкие поварские ножи из углеродистой нержавеющей стали. (Я не настолько фанат ножей, чтобы выбирать более острые, однако способные ржаветь.) Обожаю шуршание и скрежет ножа, который востришь на точильном круге, и восхитительное ощущение, когда он скользит сквозь мякоть помидора.

А вот пристрастия людей к алмазам я никогда не понимал. Ну да, они красиво сверкают, но кубик циркония или даже просто ограненного стекла сияет не хуже. Куда прелестнее бледная голубизна аквамарина или кровавый багрянец рубина! Эти великолепные цвета гораздо сочнее блеклой и пустой прозрачности бриллианта.

Но потом на моем пути встретился алмазный нож.

Рис. 29. Ножи: алмазный (слева) и металлический (справа)

Чтобы оценить необычность этого инструмента, давайте начнем с загадки: чем нож отличается от пилы? Вы можете ответить, что у пилы режущий край зазубренный, а у ножа – гладкий. Или что нож кончается острием, а торец полотна пилы – тупой. Но под микроскопом все эти различия исчезают. Какой бы гладкой режущая кромка любого металлического ножа ни казалась невооруженному глазу, при увеличении она выглядит зазубренной и тупой. Даже остро наточенный нож японского шеф-повара, разделывающего суши, выглядит тупым и грубым, словно дубинка.

Однако существует нож, чье редкостное совершенство выдерживает и пристальный осмотр. Режущая кромка хорошо наточенного алмазного ножа выглядит замечательно острой и гладкой даже под электронным микроскопом. Ее ширина – всего 2 нанометра, т. е. примерно 12 атомов углерода. На атомном уровне, может быть, и видны кое-какие щербинки, но у лезвия высокого качества они встречаются нечасто. Преимущества такого резака перед металлическим ножом очевидны, достаточно взглянуть на их изображения, полученные с помощью электронного микроскопа (рис. 29).

Алмазный нож – самый совершенный среди множества типов резаков, применявшихся в истории микроскопии, а история эта насчитывает не одно столетие. Клеточные структуры растительных и животных тканей лучше всего видны, если разрезать образец на тонкие слои. Для световой микроскопии такие ломтики должны быть толщиной с человеческий волос. Поначалу образцы готовили вручную, при помощи бритвенных лезвий. В XIX веке для этого изобрели специальные машины – микротомы. Кусочек биологической ткани постепенно, небольшими одинаковыми «шажками», двигался к ножу (или, наоборот, к нему двигался нож), что позволяло получать ломтики равной толщины.

Микротом дает толщину до нескольких микронов. Для световой микроскопии этого более чем достаточно, однако с появлением электронного микроскопа стало необходимо резать еще тоньше. В 1953 году Кейт Портер и Джозеф Блюм сконструировали первые ультрамикротомы. Эти машины умели нарезать образцы на удивительно тонкие ломтики – до пятидесяти нанометров, более чем в тысячу раз меньше толщины человеческого волоса. Вначале ультрамикротомы оснащались стеклянными ножами, но алмазные оказались лучше. Их совершенная острота дает чистые разрезы, к тому же они достаточно долговечны и могут отрезать множество ломтиков, прежде чем затупятся. Как вы понимаете, мозговую ткань следует тщательно и осторожно подготовить к разрезанию в ультрамикротоме. По консистенции она мягкая, словно тофу, и может распасться, если ее резать в свежем состоянии, так что предварительно ее заливают эпоксидной смолой, позже затвердевающей в сплошной монолит, похожий на кусок пластика.

Поначалу микротомы применялись для получения отдельных двухмерных изображений, как показано на иллюстрациях к этой главе. В 1960-х годах ученые сделали следующий шаг: они стали получать целые серии изображений от множества срезов. Этот метод называется серийной электронной микроскопией. Он дает объемную картинку благодаря совмещению набора двухмерных изображений большого количества срезов. В принципе возможно получить изображение совокупности всех нейронов и синапсов в изучаемом фрагменте мозговой ткани – и даже изображение всего мозга. Это-то нам и требуется для отыскания коннектомов. Однако на практике метод оказывается весьма трудоемким. Срезы трудно получить и поместить под микроскоп, не повредив их (такие повреждения на практике происходят сплошь и рядом). Вероятность ошибки очень велика: ведь даже небольшой фрагмент мозга дает огромное количество тончайших срезов.

Несколько десятилетий ученые не могли решить эту проблему. А потом один немецкий физик предложил простой и гениальный выход из положения.

* * *

Гейдельберг, очаровательный немецкий город примерно в часе автомобильной езды от Франкфурта, совсем не похож на фабрику технологий будущего. Полуразрушенный замок привлекает толпы туристов. Старая часть города вымощена брусчаткой и пестрит барами и ресторанами, где горланят развеселые студенты университета имени Рупрехта и Карла. Если вы чувствуете потребность предаться глубокомысленным раздумьям, отправляйтесь по Философской тропе, на вершину холма. Оттуда открывается великолепный вид на реку Неккер. Здесь витает дух гейдельбергских интеллектуалов прошлого – вспомним хотя бы Гегеля или Ханну Арендт.

Возле одного из мостов через Неккер угнездилось кирпичное строение – Институт медицинских исследований Общества имени Макса Планка (Янштрассе, 29). Здание кажется довольно скромным, однако тут работали пять нобелевских лауреатов! Это один из восьмидесяти элитных институтов при Обществе имени Макса Планка, которое смело можно назвать жемчужиной немецкой науки. Каждым институтом одновременно руководит несколько директоров, и каждый директор распоряжается солидным бюджетом, имеет небольшую армию помощников по науке и вышколенный технический персонал. Общество имени Макса Планка принимает решение в ходе голосования своих членов – нескольких сотен директоров институтов. Это клуб для самых-самых избранных.

Одним из директоров института на Янштрассе, 29 был Берт Сакман, получивший (совместно с Эрвином Неером) в 1991 году Нобелевскую премию за создание «метода локальной фиксации потенциала ионных каналов в клеточных мембранах», ныне – одного из стандартных инструментов нейрофизиолога. Он, в свою очередь, предложил Винфриду Денку стать новым директором института. Тот не отказался.

Денк – мужчина крупный, у него властный вид германского феодала. (Возможно, этому не стоит удивляться, ведь директора институтов Общества имени Макса Планка в каком-то смысле занимают в современном мире такое же положение, какое в Средние века занимали феодальные князья.) Денк поражает и своим остроумием. Научная лаборатория обычно не очень-то притягивает великих комиков, но бывают исключения. Никогда не забуду семинар одного блистательного специалиста по прикладной математике, пересыпанный уморительными шутками касательно секса, наркотиков и рок-н-ролла, я хохотал до колик в животе и до слез, мешавших мне разглядеть уравнения на доске. Афоризмы Денка свидетельствуют о живости его ума. Чтобы их оценить в полном объеме, вам лучше быть «совой», поскольку Денк предпочитает «график Дракулы», вставая поздно и зарабатываясь почти до рассвета. Вы не пожалеете о недосыпе: после полуночи остроты и каламбуры сыплются из него, как из рога изобилия.

В подвале дома на Янштрассе располагаются три электронных микроскопа, надежно укрытые в специальных отсеках от перепадов температуры. В металлических корпусах микроскопов с помощью специальных насосов создан вакуум, чтобы электроны свободно летали, не сталкиваясь с молекулами воздуха. Микроскопы эти немного капризны: то и дело какой-нибудь из них требует ремонта. Но остальные два могут при этом без перерывов сканировать образцы мозговой ткани неделями или даже месяцами.

Денк впервые прибыл в Гейдельберг, уже будучи ученым с мировым именем, он – один из изобретателей двухфотонного микроскопа. (Я уже рассказывал, что этот прибор применяли для наблюдения процессов возникновения и исчезновения синапсов в живом мозге различных представителей подопытной фауны.) Перетряхнув световую микроскопию, он решил автоматизировать серийную электронную. Его идея отличалась простотой: следует делать снимки поверхности образца, обнажаемой при отрезании ломтей, а не получать изображение самих ломтей, которые от нее отделяются.

В 2004 году Денк обнародовал свое изобретение – автоматическую систему, которая представляла собой ультрамикротом, вмонтированный в вакуумную камеру электронного микроскопа. Он назвал свой метод «серийной сканирующей электронной микроскопией основного блока образца». От этого основного блока «отскакивают» направляемые на него электроны, благодаря чему удается получить двухмерное изображение поверхности образца. Затем лезвие ультрамикротома срезает с этой поверхности тоненький слой, тем самым обнажается новая поверхность, и микроскоп делает очередной снимок. Этот процесс повторяется снова и снова. В итоге получают целую стопку двухмерных снимков – похожих на те, что дает обычная серийная электронная микроскопия.

Почему лучше получать изображение основного блока образца, а не срезов? Потому что блок относительно прочен, а срезы очень уязвимы. Даже если бы они не повреждались из-за неправильного обращения, все равно каждый из них чуть-чуть деформируется, причем всякий – по-разному. В итоге объемное изображение получается искаженным. А вот снимки поверхности основного блока образца не содержат таких искажений (или содержат лишь небольшие), поскольку основной блок практически не деформируется при срезании слоев.

Так как ведется съемка поверхности основного блока образца, а не срезов, оказалось возможным поместить ультрамикротом внутрь электронного микроскопа, создав автоматизированную систему, объединяющую в себе и срезание слоев, и построение изображения. Это повысило надежность и точность измерений, исключив чреватую ошибками стадию ручной переноски срезов от ультрамикротома к микроскопу. Срезы, получаемые новым методом, имели толщину всего 25 нанометров – вдвое меньше, чем максимально достижимая при ручном срезании и переносе.

Подобно альпинистам, ученые вечно бьются за приоритет. Слава достается первооткрывателям, а не тем, кто идет за ними. Но наука чем-то похожа и на инвестирование в бизнес-проекты: можно не только опоздать, но и чересчур поторопиться. В своей статье 2004 года Денк признаёт заслуги Стивена Литона, который высказал сходную идею еще в 1981 году. Изобретение Литона в то время не удалось применить на практике, поскольку его микроскоп выдавал бы слишком много информации, ее в ту эпоху просто не смогли бы должным образом обработать. А к тому времени, когда Денк (независимо от Литона) разработал свою методику, компьютеры уже достаточно усовершенствовались, чтобы хранить большие объемы данных.

Как угадать, когда придет время для воплощения той или иной идеи? Тут как с инвестициями: зачастую такие вещи понимают лишь задним числом, когда уже поздно извлекать сверхприбыли. Один из диагностирующих признаков – изобретение, одновременно и независимо совершаемое двумя людьми. Но еще более верная примета – нахождение двух различных решений для одной и той же задачи. Оказывается, кроме Денка были и другие специалисты, которые тоже пытались автоматизировать процесс наблюдения всё более мелких объектов.

* * *

На стенах северо-западного корпуса Гарвардского университета плющ не растет. Их гладкая стеклянная поверхность не дает и намека на историю[14]. Однако это здание находится на переднем крае гарвардских научных изысканий. Войдем в просторный вестибюль, спустимся в подвальный этаж. Перед вашими глазами предстает удивительное, сложнейшее устройство, типичная машина Руба Голдберга[15] (см. рис. 30). Не сразу понятно, куда смотреть. Но тут вы замечаете медленное движение крошечного пластмассового брусочка. Он прозрачен, слегка поблескивает оранжевым и заключает в себе черную крупицу – окрашенный кусочек мышиного мозга.

Рис. 30. Гарвардский ультрамикротом

Некоторые части машины медленно вращаются. С одной катушки на другую перематывается лента, словно в магнитофоне семидесятых годов прошлого века. На столе рядом с машиной лежит еще одна катушка. Вы отматываете с нее немного пластмассовой ленты, смотрите на свет и видите срезы мозга, расположенные на ней с одинаковыми интервалами. Наконец вы понимаете, что функция этого устройства – превращать фрагмент мозга в подобие кинопленки, записывая на ленту один срез мозга за другим.

Делать такие срезы уже само по себе непросто. Собирать их еще сложнее. Как знает всякий повар-любитель, при резке тоненькие ломтики часто прилипают к ножу, а не падают на разделочную доску, как им полагается. В традиционном ультрамикротоме эта проблема решается благодаря кювете с водой. Нож укреплен на одном из ее краев, и отрезаемые кусочки аккуратно опускаются на поверхность жидкости. Затем оператор один за другим осторожно вынимает эти срезы из воды и переносит их под электронный микроскоп для получения снимков. Одно неверное движение – и на срезе появятся неприятные складки или он вообще окажется испорчен и не пригоден для микроскопии.

Рис. 31. Свежие срезы мозга собираются на пластиковую ленту, поднимающуюся из воды

В гарвардском ультрамикротоме, как и в обычном, применяется кювета с водой: с ее помощью полоска срезов мозга стягивается с ножа. Новый элемент – пластиковая лента, поднимающаяся с поверхности воды и напоминающая ленту конвейера. (Ищите эту пластиковую ленту в нижней части фотографии, представленной на рис. 31. Может быть, вам даже удастся разглядеть два среза мышиного мозга, они касаются друг друга краями на вертикальной полоске, идущей по центру ленты.) Каждый срез прилепляется к движущейся ленте и выносится ею из воды на воздух, где быстро высыхает. В итоге мы получаем набор нежных срезов, прилепленных на куда более толстую и прочную ленту, которая и наматывается на катушку. Важная отличительная особенность прибора состоит в том, что он исключает ошибки, связанные с человеческим фактором: оператору вообще не нужно вручную управляться со срезами. А пластиковая лента очень прочна и стойка, ее практически невозможно разрушить.

Первый прототип автоматического ленточного ультрамикротома (АЛУМ) соорудили в весьма скромной обстановке – в гараже, расположенном за тысячи миль от Гарварда, в городе Альгамбра под Лос-Анджелесом. Его изобретатель, Кен Хейворт, – долговязый очкарик с решительной походкой и бойкой речью. Работая инженером в лаборатории реактивных двигателей НАСА, Хейворт конструировал системы внутренней навигации для космических кораблей. А потом он резко сменил поле деятельности и начал участвовать в докторантской программе по нейробиологии в университете Южной Калифорнии. Хейворт невероятно энергичный человек; возможно, именно поэтому в свободное время он, уединившись в собственном гараже, строил новое устройство для нарезания мозга на тончайшие ломтики.

Машина-прототип давала ломтики толщиной 10 микрон: слишком много для электронной микроскопии, но основной принцип все равно удалось продемонстрировать. В один прекрасный день Хейворту позвонил незнакомец. Это был не кто иной, как Джефф Лихтман, гарвардский специалист по изучению процессов самоуничтожения синапсов. Он предлагал сотрудничество. Хейворт устроил в Гарварде мастерскую, где сконструировал еще один АЛУМ, уже способный делать срезы толщиной всего 50 нанометров: такая толщина достижима с помощью обычного ультрамикротома. Лихтман поощрял его к дальнейшему совершенствованию прибора, и в конце концов тот достиг показателя в 30 нанометров. Для того чтобы делать снимки этих срезов, Хейворт привлек к сотрудничеству Нараянана Кастури (которого коллеги обычно называют просто Бобби). О, это была забавнейшая пара! В лаборатории шутили, что Кастури только кажется психом, со своей дикой прической и дикими байками, зато Хейворт – тот настоящий псих. (На подробностях этой шутки, известной лишь посвященным, остановимся позже.) Совместно с еще одним ученым, Ричардом Шалеком, они применяли для построения изображений сканирующий электронный микроскоп – такой же инструмент, какой недавно модифицировал Денк.

Изобретение Денка избавляет от необходимости собирать срезы; изобретение Хейворта делает процесс их сбора надежным. Другие изобретатели разрабатывают собственные схемы усовершенствования процессов изготовления срезов и получения их изображений. Так, Грэм Нотт продемонстрировал, как использовать пучок ионов для испарения верхнего слоя основного блока образца, при этом толщина такого слоя составляет всего несколько нанометров. Эта методика напоминает денковскую, но для нее не требуется алмазный резак. Мне кажется, такие исследования – заря грядущего золотого века серийной электронной микроскопии.

Но с этим золотым веком придут и новые проблемы, которые неизбежно встанут перед нейронаукой. Грядет эра чрезмерного количества информации. Один-единственный кубический миллиметр мозговой ткани способен дать петабайт визуальной информации. Это как альбом цифровых фотографий, содержащий миллиард снимков. Объем мозга мыши – тысяча кубических миллиметров, а мозг человека в тысячу раз крупнее мышиного. Так что усовершенствование процедур изготовления срезов, их сбора и анализа под микроскопом само по себе еще не достаточно для нахождения коннектомов. Съемка каждого нейрона и синапса даст чудовищный вал информации, намного превосходящий способности любого человеческого существа ее осмыслить. Чтобы отыскивать коннектомы, нам потребуются не только машины для получения изображений, но и устройства, которые смогут их видеть.

Данный текст является ознакомительным фрагментом.