2.1. МЕХАНИЗМЫ ЗАЩИТЫ ПОДСОЛНЕЧНИКА ОТ ПАРАЗИТА

Подсолнечник обладает иммунной системой, включающей разные механизмы защиты в ответ на проникновение заразихи. Различают две основные системы защиты: узнавание рецепторами растения патоген-ассоциированных молекулярных образцов (recognition of pathogen associated molecular patterns —PAMPs или MAMPs) и индуцированный эффектором иммунитет (effector-triggered immunity – ETI).

У подсолнечника на основании базового защитного ответа, инициируемого на ранних стадиях взаимодействия патогена и растения, через узнавание рецепторами клетки внедряющегося патогена формируется общая, или неспецифическая, устойчивость. Под неспецифической резистентностью понимают способность организма противостоять воздействию разнообразных по своей природе факторов.

На начальном этапе прорастания семян заразихи, прикрепления и проникновения гаустории в корень известно несколько механизмов, приводящих к возникновению общей устойчивости подсолнечника к паразиту. К ним относятся снижение экссудации стриголактонов корнями хозяина, укрепление клеточной стенки через поперечное сшивание белков или осаждение на ней метаболитов (лигнин, суберин, каллоза), накопление токсичных фенольных соединений в точке заражения.

В то же время новые вирулентные расы заразихи способны избегать узнавания растительными рецепторами и заражать подсолнечник. В ответ на эту угрозу, новые устойчивые гибриды подсолнечника способны узнавать инфицирующие их патогены с помощью белков R (белков устойчивости, или резистентности), взаимодействующих непосредственно или опосредованно с эффекторами патогенов, которые являются видо- или штаммоспецифичными. Такое взаимодействие индуцирует сильный специфический защитный ответ растения, который часто связан с клеточной смертью для ограничения размножения и распространения патогена, и формирует специфическую устойчивость подсолнечника к заразихе. Специфическая резистентность характеризуется высокой степенью противодействия организма к воздействию определенных факторов или их близких групп.

Большинство белков R содержат нуклеотидсвязывающий, протеинкиназный сайты и богатые лейцином повторы и обозначаются как белки NBS-LRR. Домен белка, содержащий повтор, богатый лекцином, ответственен за связывание белка с белком, то есть отвечает за распознавание патогена. Протеинкиназный и нуклеотидсвязывающий домены задействованы в фосфорилировании белков и регуляции экспрессии защитных генов. NBS-LRR-белки участвуют в запуске сигнальных каскадов, приводящих к развитию летальной программируемой клеточной смерти (гиперчувствительный ответ, HR) через генерацию активных форм кислорода (ROS).

На этапе, когда произошло проникновение и заражение паразитом корня, известно ряд механизмов, обусловливающих образование специфической устойчивости подсолнечника. К ним относятся образование внутри сосудов-хозяев гелеобразных веществ, блокирующих передачу питательных веществ; формирование токсичных соединений, убивающих заразиху; гибель внешних клеток корня.

Общая и специфическая устойчивость подсолнечника к заразихе может быть качественной, называемая еще вертикальной, которая обычно контролируется единичными доминантными генами, и количественной (горизонтальной), передающаяся несколькими генами.

Качественная стойкость гибридов подсолнечника к цветковому паразиту достаточно хорошо изучена. Она часто рассматривается как устойчивость «ген против гена» и обычно весьма специфична в отношении определенного гибрида или сорта растения и конкретной расы патогена. Этот тип устойчивости подсолнечника к заразихе не является длительным: под селекционным давлением, оказываемым устойчивыми гибридами, происходит отбор мутаций у патогена. В результате появляются новые расы заразихи, которые поражают устойчивые гибриды подсолнечника. Именно качественная устойчивость подсолнечника к заразихе, которая контролируется единичными доминантными генами, на протяжении длительного времени была мишенью для создания гибридов, устойчивых к этому паразиту.

Возникновение качественной устойчивости подсолнечника к заразихе связывают с генами NBS-LRR (R-гены), контролирующими белки R. R-гены кодируют нуклеотидсвязывающие сайты (NBS) и богатые лейцином повторы (LRR). R-белки участвуют в обнаружении различных патогенов, включая заразиху, бактерии, вирусы, грибы, нематоды, насекомые и оомицеты.

Растительные белки NBS-LRR многочисленны и древние по происхождению. Они кодируются одним из крупнейших семейств генов, известных в растениях. Это большое семейство контролируется сотнями разнообразных генов и может быть подразделено на функционально различные субсемейства, содержащие TIR-домен (TNL) и CC-домен (CNL). R-белки объединяются в основные классы белков генов устойчивости следующим образом: TIR-NBS-LRR, CC-NBS-LLRR, NBS-LRR, PK, TM-CC, LRR-TM, LRR-TM-PK.

У Arabidopsis thaliana генов, кодирующих NBS-LRR, примерно около 150, в рисе посевном (Oryza sativa) – более 400, и, вероятно, значительно больше в крупных геномах растений, которые еще не полностью секвенированы. Многие NBS-кодирующие последовательности были амплифицированы из разнообразных видов растений с использованием ПЦР с вырожденными праймерами на основе консервативных последовательностей в домене NBS. В настоящее время в публичных базах данных имеется более 1600 NBS-последовательностей. Они встречаются у несосудистых и голосеменных видов, а также покрытосеменных растений.

Эволюция R-генов растений протекала в основном путем дублирования и равной или неравной мейотической рекомбинации. Исследование генов R, помимо его теоретической ценности, представляет собой значительный практический интерес для создания растительных генотипов, устойчивых к вредным организмам.

У подсолнечника известно ряд генов, вызывающих устойчивость к разным расам заразихи. Стойкость к расам растения-паразита обусловливается обычно доминантными генами: Or1 (вызывает стойкость к расе А), Or2 (– стойкость к расам А, В), Or3 (– стойкость к расам А, В и С), Or4 (– стойкость к расам А, В, С и D), Or5 (– стойкость к расам А, В, С, D и Е) и так далее.

Со всех известных генов наиболее детальный молекулярный анализ был проведен для гена Or5. Для этого гена было идентифицировано 5 локусов SCAR и 1 локус RAPD. Наименьшее расстояние между SCAR маркерами и функциональными генами было обнаружено для RTS05 и составило 5,6 сМ. Расстояние между SSR локусом СRT392 и Or5 составило 6,2 сМ.

Как правило, гены устойчивости к заразихе у подсолнечника распределены по хромосомам не случайно, а как бы скучено. Причем они имеют одиночное мультиаллельное расположение (один локус с множеством кодоминантных аллелей, контролирующих устойчивость к разным расам патогена).

Обычно возникновение кластеров близ лежащих генов характерно для R-генов и обусловлено внутри- и межгенными обменами участков ДНК, имеющих прямые или инвертированные повторяющиеся последовательности, часто приводящие к неравному кроссинговеру. Продукты R-генов отличаются деталями структурны рецепторных участков и могут связываться с разными по химической структуре элиситорами. Таким образом, у хозяина и паразита устанавливаются расоспецифические взаимоотношения, описываемые как система «ген-на-ген». При этом гены устойчивости у подсолнечника обычно являются доминантными, а гены вирулентности у патогена – рецессивными.

Устойчивое состояние (несовместимость) развивается только в том случае, если комплементарные гены хозяина и паразита находятся в доминантном состоянии. Если же один из них или оба гена рецессивные, то растение восприимчиво, а паразит вирулентен (состояние совместимости).

Взаимодействие продуктов этих генов у хозяина и патогена можно объяснить следующим образом: ген устойчивости R-ген контролирует синтез специфического белка-рецептора, а ген авирулентности (Avr-ген) – специфического элиситора. Их взаимодействие приводит к индукции защитных реакций. Если у растения отсутствует рецептор или у паразита элиситор, то защитная реакция не развивается.

Отсутствие рецепции у чувствительных гибридов подсолнечника к заразихе может быть связано с делецией генов хозяина и паразита (рецептора или элиситора нет вообще) или мутациями этих генов (взаимодействие элиситор-рецептор ослаблено или потеряно). В этой связи у O. cumana и подсолнечника обнаружена очень высокая частота мутирования локусов, ответственных за заражение хозяина и устойчивость к патогену, превышающая частоту других генов. Однако у паразита в связи с морфологическими и биологическими особенностями развития и широкою адаптационною изменчивостью частота мутирования генов паразитизма намного выше, чем у подсолнечника генов устойчивости к патогену.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК

Данный текст является ознакомительным фрагментом.