Бесхвостые мыши
Бесхвостые мыши
Это очень странный каприз судьбы – то, что у человека нет хвоста. Ведь у всех позвоночных есть хвосты – с чешуей, с перьями, с кисточкой и без нее, длинные и короткие. У всех есть. А у нас нет. Правда, остальные антропоиды тоже без хвоста. Но это – не объяснение. Трудно сказать, когда мы потеряли хвост. По-видимому, где-то от 30 до 15 млн лет назад. Еще труднее понять, почему мы его потеряли. Можно, конечно, допустить, что бесхвостость – это плата за интеллект, однако прямые связи тут как-то не прослеживаются. Вряд ли вообще отсутствие хвоста дает какие-либо селективные преимущества. Скорее, наоборот. Предмет-то это отнюдь не лишний – им и мух отгонять удобно, при случае и повилять можно для выражения переполняющих чувств…
Мышей природа хвостами не обидела. И они свой хвост отлично используют. Он у мышей вообще как пятая конечность. Они хвостом балансируют, цепляются за предметы, а когда возмущены – постукивают им, точь-в-точь как мы в раздражении барабаним пальцами по столу.
Так вот, с мышами и произошла эта длинная история. Началась она давно, около 80 лет назад.
В 1927 г. молодой русский врач Нелли Добровольская-Завадская исследовала в Рижском университете влияние модных тогда Х-лучей на развитие раковых опухолей у мышей. В потомстве одного из облученных самцов она обнаружила мышей двух типов: с нормальными хвостами и с короткими. Они были такие смешные, эти мыши с короткими обрубочками вместо хвостов, так забавно ими помахивали, что Нелли Добровольская решила вывести породу таких мышей, хотя эта их особенность не имела никакого значения в ее исследовании.
Остановимся на минутку. Великий кибернетик Шеннон ввел в употребление слово «Serendipity». Этим термином он обозначил способность находить совсем не то, что ищешь, а нечто еще более интересное. Ту же мысль, но более подробно, выразил Винни-Пух: «Если мы будем искать эту яму, то мы ее обязательно не найдем, и тогда мы, может быть, найдем то, чего мы не ищем, а оно-то есть то, что мы на самом деле ищем».
Добровольская не нашла средства против рака. Она нашла короткохвостых мышей. Но ее мыши потом, через много лет, дали довольно много для понимания свойств злокачественных клеток.
Однако вернемся к нашим хвостам. Добровольская предположила, что ее короткохвостые мыши несут новую доминантную мутацию, которую она назвала греческим словом «Brachyury». Символом этого гена стала буква Т, сокращение от слова tail – «хвост».
Все попытки Добровольской получить линию короткохвостых мышей к успеху не привели. Два короткохвостых родителя давали всегда и короткохвостых и нормальных потомков. На этом основании хирург Добровольская предположила, что она имеет дело с летальной в гомозиготе мутацией (вспомните кошек с острова Мэн). Ее гипотеза была совершенно справедливой, хоть она и не смогла ее доказать.
Летом 1928 г. Добровольская отправилась в Париж и взяла с собой несколько мышей. Вместе с другим молодым русским исследователем Николаем Кобозиевым она собиралась изучить развитие гомозигот по гену Т. Добровольская и Кобозиев занялись скрещиванием гетерозиготных по мутации Т самцов (Т/+) с самками из двух линий с нормальными хвостами. Первая линия – это французские белые лабораторные мыши: а вторая – потомки дикой домовой мыши, ее Добровольская поймала в Испании, где проводила свой отпуск.
Можете себе представить удивление исследователей, когда они однажды утром пришли посмотреть на потомков, родившихся от этих скрещиваний, и увидели вместе с короткохвостыми и нормальными мышами несколько зверьков вообще без хвостов или с совершенно поросячьими хвостиками! Откуда такие мышата взялись? Решить эту проблему можно было только с помощью генетического анализа. Добровольская и Кобозиев провели новое скрещивание – бесхвостых друг с другом. И здесь их ожидал новый сюрприз: все потомки от этого скрещивания оказались похожими на родителей – хвостов как не бывало. Почему? Рассмотрим внимательно это скрещивание. Гетерозиготу по доминантной мутации скрещиваем с нормой. И вместо того, чтобы получить в потомстве расщепление, 50 % мутантов и 50 % нормальных, получаем короткохвостых, нормальных – и еще неизвестно откуда берутся бесхвостые. Более того, эти бесхвостые при скрещивании друг с другом вообще не дают расщепления, а приносят только бесхвостое потомство, то есть ведут себя как гомозиготы. И еще одна загадка. Ведь все эти недоразумения произошли от скрещивания мутантов с двумя совершенно разными линиями, одна из которых вела происхождение от дикой мыши.
Добровольская в сомнениях. Ситуация, как у пассажира с чемоданом из анекдота: и нести тяжело, и бросить жалко. И тем не менее Добровольская во время своей поездки по Америке после безуспешных попыток решить эту проблему говорит: «Наилучшее решение состоит, видимо, в том, чтобы бросить эти бестолковые хвосты и вернуться в свою область, к раковым исследованиям».
Судьбе угодно, чтобы эта фраза была произнесена в Колумбийском университете, в лаборатории Лесли Кларенса Данна. Данн от этих бестолковых хвостов пришел в восторг и воскликнул: «Если так, то отдайте их мне». Хочу, чтобы вы поняли, что чувствовал он в этот момент. Ведь даже теперь, когда число описанных мутаций у мышей перевалило за 300, у любого генетика, проводящего опыты на мышах, замирает сердце, если он видит нового мутанта. Что же говорить о времени этого исторического разговора, ведь мутаций у мышей было описано очень мало. И кроме того, это был не простой мутант, а совершенно загадочный. И потом стоит учесть, что за человек был Лесли Кларенс Данн.
Лучше всего о нем сказала его ученица Доротея Беннет: «Он был генетиком из генетиков и биологом из биологов. Он исчерпывающе знал все, что касается генетики, и обладал твердой уверенностью в том, что именно генетика является той наукой, которая связывает все биологические дисциплины. Это свойство давало ему возможность компетентно разговаривать с любым человеком, интересующимся биологическими проблемами: и с соседями, жалующимися на неспособность вырастить вкусные помидоры, и с политическими деятелями – о генетической абсурдности расовой дискриминации».
Данна особенно привлекало то, что мы называем наследственной изменчивостью, в какой бы форме она ни проявлялась. Это делало его истинным натуралистом. Он одинаково интересовался человеком, мышами и садовыми цветами. Этот всеобъемлющий интерес отразился в том биологическом материале, с которым Данн работал: мыши, куры, дрозофила, человек. Самого ученого такая собственная широта раздражала, он чувствовал, что это делает его дилетантом во всем и специалистом ни в чем. В действительности было не так: то, что Данн называл дилетантизмом, было отражением его способности использовать генетику как связующую цепь между биологическими науками.
Разумеется, Данн не был дилетантом ни в одной из областей, где он работал. Он был классиком. Одним из последних классиков. Все его работы по дрозофиле, курам и мышам стали теперь классическими. Пример тому – его исследования с короткохвостыми мышами. Добровольская прислала их Данну в 1931 г.
Первой задачей, которую Данн поставил перед собой, была проверка гипотезы Добровольской о летальности гомозигот по аллелю Т. Это предположение сразу же подтвердилось. При вскрытии короткохвостых самок через 10 дней после оплодотворения короткохвостым самцом ученый обнаружил, что 25 % их эмбрионов имеют хвост, «обрубленный по самые плечи». У этих эмбрионов была только голова и передние лапы.
Исследователи проследили, когда впервые начинают проявляться отличия между нормальными зародышами и гомозиготами по Т, и остановились на 8-м дне беременности.
Это сейчас все кажется таким простым. Но ведь работа делалась в 1931 г. Стадии нормального эмбрионального развития мыши еще не были исследованы. И Данну, эмбриологией по сути не занимавшемуся, пришлось сделать эту работу, чтобы сравнить особенность развития мутантных и нормальных эмбрионов. Сейчас и эта его работа считается классической. Это было не только первое описание эмбриональных эффектов летального гена у млекопитающих. Это была первая демонстрация влияния генетических факторов на процессы эмбриональной индукции. Данн показал, что уродства, наблюдаемые у гомозигот по аллелю Т, и их гибель связаны с тем, что их клетки теряют способность к дифференцировке. С этой работы началась та наука, которую мы сейчас называем генетикой развития.
Теперь, когда гипотеза Добровольской о летальности Т-гомозигот была подтверждена, Данн мог заняться вплотную генетикой этих бестолковых хвостов, вернее, отсутствия таковых. Для начала он воспроизвел результат Добровольской: скрещивание двух бесхвостых мышей одного происхождения действительно давало только бесхвостых потомков.
Первое время Данн работал с потомками от скрещивания (Т/+) самца с испанской дикой мышью. Эта линия особенно заинтриговала его своим диким природным происхождением, ибо он был прежде всего натуралистом. Однако Данн более внимательно, чем Добровольская, относился к арифметике.
Ученый заметил, что если при скрещивании двух короткохвостых мышей (Т/+) друг с другом среднее количество потомков уменьшается по сравнению с нормой на четверть, то при скрещивании бесхвостых – наполовину. На основе этой арифметики он предположил, что в последнем случае гибнет не один, а два гомозиготных класса. Тогда выжившие бесхвостые мыши есть гетерозиготы по двум летальным мутациям: уже известному доминантному аллелю Т и новому, рецессивному аллелю t, существование которого еще предстояло доказать. Итак, в одном и том же локусе есть два летальных в гомозиготе аллеля. Причем, когда эти два аллеля объединяются в гетерозиготе T/t, летальность исчезает. С таким феноменом генетика еще не встречалась.
Нечто похожее нашел в свое время на дрозофиле Герман Меллер. Но в его случае эти два гена не были в строгом смысле аллелями (относились к разным локусам), между ними иногда проходил кроссин-говер.
Данну пришлось отказаться от поисков аналогий. Он предложил рабочую гипотезу: гены, по крайней мере эти гены, – несколько более громоздкие устройства, чем предполагалось раньше, и различные аллели могут контролировать разные процессы в ходе раннего развития. Эта данновская гипотеза затем была блестяще подтверждена им и его учениками и сейчас стала самоочевидной. Однако все это случилось много позднее, а в тот момент у Данна не было времени и возможностей для подробной проверки гипотезы: ситуация вдруг резко усложнилась.
Как вы помните, Данн получил от Добровольской две линии бесхвостых мышей: линию А, идущую от французских белых мышей, и линию 29, ведущую свою родословную от испанской дикой мыши. Обе эти линии в инбредных (от инбридинг – близкородственное скрещивание) скрещиваниях рождали живых бесхвостых мышей, а гомозиготы по Т и по рецессивному аллелю t гибли до рождения. Когда же Данн скрестил бесхвостых мышей линии А с такими же представителями линии 29, он опять получил совершенно неожиданный результат. Размер помета равнялся 3/4 от нормы, а не 1/2, как ожидалось, и, что самое удивительное, среди потомков были мыши с совершенно нормальными хвостами! Будучи научен предыдущим опытом, Данн быстро нашел верное решение. Он предположил, что рецессивные летальные аллели в линиях А и 29 были разными. Они нарушают разные этапы эмбриогенеза и в гетерозиготе ta/t29 оказываются не только жизнеспособными, как и в случае с T/t, но даже не нарушают развитие хвоста, то есть компенсируются, исправляются дефекты обоих свойств: и жизнеспособности, и хвостатости. На этом основании Данн предсказал, что как и сами эмбриональные дефекты, так и время их проявления у гомозигот по трем известным теперь мутациям в локусе Т должны быть разными.
Все это привело Данна к мысли, что он имеет дело не с геном в строгом смысле, а с достаточно большим районом хромосомы, который выступает как целое в функциональном и структурном плане. Впереди было огромное поле работы. Но прежде всего необходимо было выяснить, каковы механизмы летального действия этих аллелей.
Самые первые результаты свидетельствовали о том, что в большинстве случаев причина заключалась в неспособности клеток у летальных гомозигот общаться друг с другом. Уже в наше время с использованием тонких иммунологических методов было показано: многие стадиеспе-цифические эффекты некоторых t-аллелей, действующие на процесс развития, объясняются аномалиями клеточной поверхности. У клеток эмбрионов с таким генотипом нарушена способность вступать в контакты друг с другом, опознавать друг друга и индуцировать дальнейшую дифференцировку.
Как здесь не вспомнить мудрость Винни-Пуха: надо искать то, что не ищешь, и тогда найдешь то, что искал. Вы помните, что наша длинная история начиналась с раковых исследований Добровольской. И через 50 лет клетки t-эмбрионов оказались моделью для понимания поведения раковых клеток. Они ведь тоже имеют измененные клеточные поверхности, не способны общаться с нормальными клетками и вступать на путь дифференцировки.
Данный текст является ознакомительным фрагментом.