ГЛАВА 2 Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы

We use cookies. Read the Privacy and Cookie Policy

ГЛАВА 2

Образование нашей планеты: «холодная» и «горячая» гипотезы. Гравитационная дифференциация недр. Происхождение атмосферы и гидросферы

Рассказ о происхождении Земли и Солнечной системы нам придется начать издалека. В 1687 году И. Ньютон вывел закон всемирного тяготения: каждое тело во Вселенной притягивает остальные с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Теоретически закон всемирного тяготения позволяет рассчитать движения любого тела во Вселенной под влиянием тяготения других тел. Но — увы! — только теоретически: уравнения, необходимые для описания движения всего трех изолированных тел под влиянием притяжения друг друга, столь сложны, что их решение не удавалось получить почти три столетия, до 60-х годов XX века. Понятно, что о полном решении для такой системы тел, как Солнечная система, и говорить не приходится. Что же до приближенных расчетов, которыми занимались многие выдающиеся математики и астрономы (Ж. Лагранж, П. Лаплас и другие), то они показывают, что возмущения в орбитах планет носят периодический характер: параметры орбиты меняются в одном направлении, затем в противоположном, и так до бесконечности. В самой по себе определяемой тяготением структуре Солнечной системы вроде бы нет ничего, что мешало бы ей существовать вечно; недаром сам Ньютон вопрос о происхождении Солнечной системы вообще не ставил.

Давайте, однако, задумаемся: если бы причиной движения планет было одно лишь тяготение, то что с ними произошло бы? Правильно, они «упали» бы на Солнце. Но планеты благополучно двигаются по своим орбитам перпендикулярно действующей на них силе тяжести и при этом еще вращаются вокруг собственной оси. Это движение не могло возникнуть — и не возникло! — под влиянием тяготения Солнца. Откуда же оно взялось? Дело в том, что всякое вращающееся тело обладает определенным качеством, которое называется моментом количества движения (МКД). Величина МКД зависит от трех параметров: массы тела, его круговой скорости и расстояния до центра вращения. К XVIII веку было установлено, что МКД не возникает из ничего и не исчезает бесследно, а может лишь передаваться от тела к телу. Это закон сохранения момента количества движения, принадлежащий к ряду законов сохранения (таких, как законы сохранения вещества, энергии и пр.). А коли так, то любая теория возникновения Вселенной (или Солнечной системы) как минимум не должна ему противоречить.

Итак, все тела, составляющие Солнечную систему, обладают собственным МКД. Создать МКД невозможно — откуда же он взялся? Рассмотрим следующий выход из этого тупика. МКД могут различаться в зависимости от направления вращения: по и против часовой стрелки — положительный и отрицательный МКД. Если телу (или системе тел) сообщить два МКД (равной величины, но разного знака), то оба момента взаимно уничтожатся, и возникнет система, лишенная МКД. Но в таком случае верно и обратное: система, изначально не обладавшая МКД, может разделиться на две: одну с положительным, другую — с равным ему отрицательным МКД. Таким образом, МКД как бы появляется и исчезает без нарушения закона сохранения. Исходя из этого, можно предположить, что Вселенная вначале не обладала МКД, но затем одни ее части получили положительный момент, а другие — одновременно — отрицательный.

Так вот, если посмотреть на Солнечную систему «с высоты» — из некой точки над Северным полюсом Земли (и, соответственно, над плоскостью ее орбиты), то окажется, что Земля, Солнце и большинство иных тел вращаются вокруг своей оси против часовой стрелки; планеты вокруг Солнца и спутники вокруг планет — тоже. Значит, положительные и отрицательные МКД всех тел, составляющих Солнечную систему, отнюдь не уравновешиваются между собой; суммарный МКД этой системы очень велик, и необходимо выяснить его происхождение.

В 1796 году П. Лаплас сформулировал небулярную теорию, согласно которой последовательность событий при образовании Солнечной системы такова. Имеется первичное газопылевое облако (туманность — по латыни «небула»), возникшее в результате концентрации рассеянного межзвездного вещества под действием взаимного притяжения его частиц (в соответствии с законом всемирного тяготения). Небула не является идеальным шаром, и ее края — просто по теории вероятности — находятся на неодинаковом расстоянии от ближайшей небулы (или звезды), а потому притягиваются той с неодинаковой силой (которая, как мы помним, обратно пропорциональна квадрату расстояния). Этой неравновесности достаточно для того, чтобы наша небула получила первичный толчок, который и придаст ей вращательное движение, пусть и чрезвычайно слабое.

Как только небула начинает поворачиваться вокруг своей оси, в ней возникает сила тяжести (как в космическом корабле, который специально «раскручивают» для противодействия невесомости). Под действием силы тяжести небула должна начать сжиматься, т.е. ее радиус уменьшается. А мы с вами помним, что МКД (который есть величина постоянная) зависит от трех параметров: массы тела, радиуса и скорости его вращения; масса — тоже величина неизменная, поэтому уменьшение радиуса может быть компенсировано только увеличением скорости вращения. В результате огромный газовый шар будет вращаться все быстрее и быстрее, работая как центрифуга: под действием центробежной силы его экватор вспухает, придавая шару форму все более сплющенного эллипсоида. Наступает момент, когда все возрастающая центробежная сила на экваторе уравновешивает силу притяжения и от него (экватора) начинает отслаиваться кольцо, а затем, по мере дальнейшего сжатия небулы, еще и еще. Вещество этих вращающихся колец начинает под действием взаимного притяжения его частиц конденсироваться в планеты, от которых, в свою очередь, отрываются их спутники.

Теория Лапласа, согласно которой Земля была изначально холодной, сохраняла популярность на протяжении почти столетия, хотя ей и противоречили некоторые астрономические данные (например, вращение Венеры и Урана в сторону, обратную всем остальным планетам и Солнцу). Однако ближе к концу XIX века, когда было твердо установлено, что температура в недрах нашей планеты чрезвычайно высока (по современным данным, свыше 1000°С), большинство ученых стало разделять мнение об изначально горячей Земле — огненном шаре, постепенно остывающем с поверхности. Поиски источника этого раскаленного вещества вполне естественно было начать с Солнца. В начале ХХ века астрономы Т. Чемберлен и Ф. Мультон выдвинули, а Дж. Джинс математически обосновал планетезимальную теорию происхождения планет Солнечной системы. Суть ее состоит в том, что некогда поблизости от Солнца («поблизости» — это по космическим масштабам) прошла другая звезда. При этом взаимное притяжение вырвало из каждой из них по гигантскому протуберанцу звездного вещества, которые, соединившись, составили «межзвездный мост», распавшийся затем на отдельные «капли» — планетезимали. Остывающие планетезимали и дали начало планетам и их спутникам.

Однако вторая половина ХХ века стала временем возвращения к концепции изначально холодной Земли. Во-первых, нашлись серьезные, чисто астрономические, возражения против планетезимальной теории. Г. Рессел, например, обратил внимание на то простое обстоятельство, что если между Солнцем и проходящей звездой протянется лента из звездного вещества, то ее средняя часть (где притяжение двух светил взаимно уравновешивается) должна будет пребывать в полной неподвижности. И напротив, выяснилось, что некоторые оказавшиеся ошибочными положения Лапласа вполне могут быть откорректированы в рамках дальнейшего развития небулярной теории. В качестве примера можно привести гипотезу О. Ю. Шмидта (в ней газо-пылевое облако захватывается уже существующим на тот момент Солнцем) или более популярную ныне модель К. фон Вайцзеккера (в ней вращающаяся небула представляет собой уже не гомогенный шар, как у Лапласа, а систему разноскоростных вихрей, несколько напоминающую шарикоподшипник). Полагают также, что газ и пыль во вращающейся газо-пылевой туманности ведут себя по-разному: пыль собирается в плоский экваториальный диск, а газ образует почти шарообразное облако, густеющее по направлению к центру туманности. Впоследствии пыль экваториального диска слипается в планеты, а газ под собственной тяжестью разогревается так, что «вспыхивает» в виде Солнца.

Более существенным для победы «холодной» концепции оказалось другое: был найден убедительный и при этом достаточно простой ответ на вопрос — откуда же берется тепло, разогревшее недра изначально холодной Земли до столь высоких температур? Этих источников тепла, как сейчас полагают, два: энергия распада радиоактивных элементов и гравитационная дифференциация недр. С радиоактивностью все достаточно ясно, да и источник это второстепенный — на него приходится, согласно современным оценкам, не более 15% энергии разогрева. Идея же гравитационной дифференциации недр (ее детальную разработку связывают с именем О. Г. Сорохтина) заключается в следующем.

Зная массу и объем Земли (они были рассчитаны еще в XVIII веке), легко определить усредненную плотность земного вещества — 5,5 г/см3. Между тем плотность доступных нам для прямого изучения горных пород вдвое меньше: средняя плотность вещества земной коры составляет 2,8 г/см3. Отсюда ясно, что вещество в глубоких недрах Земли должно иметь плотность много выше средней.

Известно, что почти 9/10 массы Земли приходится на долю всего четырех химических элементов — кислорода (входящего в состав окислов), кремния, алюминия и железа. Поэтому можно с достаточной уверенностью утверждать, что более «легкие» наружные слои планеты состоят преимущественно из соединений кремния (алюмосиликатов), а «тяжелые» внутренние — железа.

В момент образования Земли («горячим» или «холодным» способом — для нас сейчас неважно) «тяжелые» и «легкие» элементы и их соединения не могли не быть полностью перемешаны. Однако дальше начинается их гравитационная дифференциация: под действием силы тяжести «тяжелые» соединения (железо) «тонут» — опускаются к центру планеты, а «легкие» (кремний) — «всплывают» к ее поверхности. Давайте теперь рассмотрим этот процесс в мысленно вырезанном вертикальном столбе земного вещества, основание которого — центр планеты, а вершина — ее поверхность. «Тонущее» железо постоянно смещает центр тяжести этого столба к его основанию. При этом потенциальная энергия столба (пропорциональная произведению массы тела на высоту его подъема, что в нашем случае составляет расстояние между центром Земли и центром тяжести столба) постоянно уменьшается. Суммарная же энергия Земли, в соответствии с законами сохранения, неизменна; следовательно, теряющаяся в процессе гравитационной дифференциации потенциальная энергия может преобразовываться лишь в кинетическую энергию молекул, т.е. выделяться в виде тепла.

Расчеты геофизиков показывают, что эта энергия составляет чудовищную величину 4·1030 кал (что эквивалентно триллиону суммарных ядерных боезапасов всех стран мира). Этого вполне достаточно для того, чтобы — даже не прибегая к помощи энергии радиоактивного распада — разогреть недра изначально холодной Земли до расплавленного состояния. Однако, рассчитывая тепловой баланс Земли за всю ее историю, геофизики пришли к выводу, что температура ее недр лишь местами могла доходить до 1600°C, в основном составляя около 1200°C; а это означает, что наша планета, вопреки бытовавшим ранее представлениям, никогда не была полностью расплавленной. Разумеется, планета постоянно теряет тепловую энергию, остывая с поверхности, но этот расход в значительной степени (если не полностью) компенсируется излучением Солнца.

Итак, Земля на протяжении всей своей истории представляет собой твердое тело (более того, в глубинах, при высоких давлениях — очень твердое тело), которое, однако, парадоксальным образом ведет себя при очень больших постоянных нагрузках как чрезвычайно вязкая жидкость. Сама форма планеты — эллипсоид с чуть выпяченным Северным полюсом и чуть вдавленным Южным — идеально соответствует той, что должна принимать жидкость в состоянии равновесия. В толще этой «жидкости» постоянно происходят чрезвычайно медленные, но немыслимо мощные движения колоссальных масс вещества, с которыми связаны вулканизм, горообразование, горизонтальные перемещения континентов и т.д. — их закономерности мы будем обсуждать в следующей главе. Здесь важно запомнить, что источником энергии для всех этих процессов является в конечном счете все та же гравитационная дифференциация вещества в недрах планеты. Соответственно, когда этот процесс завершится полностью, наша планета станет геологически неактивной, «мертвой» — подобно Луне. Согласно расчетам геофизиков, к настоящему моменту уже 85% имеющегося на Земле железа опустилось в ее ядро, а на «оседание» оставшихся 15% потребуется еще около 1,5 млрд лет.

В результате гравитационной дифференциации недра планеты оказываются разделенными (как молоко в сепараторе) на три основных слоя: «тяжелый», «промежуточный» и «легкий». Внутренний «тяжелый» слой (с плотностью вещества около 8 г/см3) — центральное ядро, состоящее из соединений железа и иных металлов; из 6400 км, составляющих радиус планеты, на ядро приходится 2900 км. Поверхностный «легкий» слой (плотность его вещества около 2,5 г/см3) называется корой. Средняя толщина коры всего-навсего 33 км; она отделена от нижележащих слоев поверхностью Мохоровичича, при переходе через которую скачкообразно увеличивается скорость распространения упругих волн. Между корой и ядром располагается «промежуточный» слой — мантия; ее породы имеют плотность около 3,5 г/см3 и находятся в частично расплавленном состоянии. Верхняя мантия отделена от нижней мантии лежащим в 60–250 км от поверхности расплавленным слоем базальтов — астеносферой; верхняя мантия вместе с корой образует твердую оболочку планеты — литосферу (рис. 4). В астеносфере находятся магматические очаги, питающие вулканы, деятельности которых Земля обязана своей подвижной оболочкой — гидросферой и атмосферой.

Рис. 4. Структура недр планеты (со схематическим вулканом)

Рис. 4. Структура недр планеты (со схематическим вулканом)

Согласно современным представлениям, атмосфера и гидросфера возникли в результате дегазации магмы, выплавляющейся при вулканических процессах из верхней мантии и создающей земную кору. Атмосфера и гидросфера состоят из легких летучих веществ (соединений водорода, углерода и азота), содержание которых на Земле в целом очень мало — примерно в миллион раз меньше, чем в космосе. Причина такого дефицита состоит в том, что эти летучие вещества были «вымыты» еще из протопланетного облака солнечным ветром (т.е. потоками солнечной плазмы) и давлением света. В момент образования Земли из протопланетного облака все элементы ее будущей атмосферы и гидросферы находились в связанном виде, в составе твердых веществ: вода — в гидроокислах, азот — в нитридах (и, возможно, в нитратах), кислород — в окислах металлов, углерод — в графите, карбидах и карбонатах.

Современные вулканические газы примерно на 75% состоят из паров воды и на 15% — из углекислого газа, а остаток приходится на метан, аммиак, соединения серы (H2S и SO2) и «кислые дымы» (HCl, HF, HBr, HI), а также инертные газы; свободный кислород полностью отсутствует. Изучение содержимого газовых пузырьков в древнейших (катархейских) кварцитах Алданского щита показало, что качественный состав этих газов полностью соответствует тому, что перечислено выше. Поскольку эта первичная атмосфера была еще очень тонкой, температура на поверхности Земли равнялась температуре лучистого равновесия, получающейся при выравнивании потока солнечного тепла, поглощаемого поверхностью, с потоком тепла, излучаемым ею; для планеты с параметрами Земли температура лучистого равновесия равна примерно 15°C.

В итоге почти весь водяной пар из состава вулканических газов должен был конденсироваться, формируя гидросферу. В этот первичный океан переходили, растворяясь в воде, и другие компоненты вулканических газов — б?льшая часть углекислого газа, «кислые дымы», окиси серы и часть аммиака. В результате первичная атмосфера (содержащая — в равновесии с океаном — водяные пары, CO2, CO, CH4, NH3, H2S, инертные газы и являющаяся восстановительной) оставалась тонкой и температура на поверхности планеты не отклонялась сколь-нибудь заметно от точки лучистого равновесия, оставаясь в пределах существования жидкой воды. Это и предопределило одно из главных отличий Земли от других планет Солнечной системы — постоянное наличие на ней гидросферы.

Как же изменялся объем гидросферы на протяжении ее истории? В расплавленном базальте (в астеносфере) при температуре 1000°С и давлении 5–10 тыс. атмосфер растворено до 7–8% H2O: именно столько воды, как установлено вулканологами, дегазируется при излиянии лав. Б?льшая часть этой воды (имеющей, таким образом, мантийное происхождение) пополняла собою гидросферу, но часть ее поглощалась обратно породами океанической коры (этот процесс называется серпентинизацией). Расчеты геофизиков показывают, что в катархее и архее воды в океанских впадинах было мало и она еще не прикрывала срединно-океанические хребты. В океаническую кору вода поступала не из океанов, а снизу — непосредственно из мантии. В начале протерозоя уровень океанов достиг вершин срединно-океанических хребтов, но на протяжении всего раннего протерозоя практически весь объем поступавшей в океаны воды поглощался породами океанической коры. К началу среднего протерозоя процессы серпентинизации закончились и океаническая кора обрела современный состав. С этого времени объем океанов вновь начал нарастать. Это будет продолжаться (с постепенным замедлением), пока на Земле не прекратятся вулканические процессы.

Если спросить человека: «Отчего море соленое?», он почти наверняка ответит: «Оттого же, отчего солоны бессточные озера (вроде озера Эльтон, снабжающего нас поваренной солью): впадающие в море реки несут некоторое количество солей, потом вода испаряется, а соль остается». Ответ этот неверен: соленость океана имеет совершенно иную природу, чем соленость внутриконтинентальных конечных водоемов стока. Дело в том, что вода первичного океана имела различные примеси. Одним источником этих примесей были водорастворимые атмосферные газы, другим — горные породы, из которых в результате эрозии (как на суше, так и на морском дне) вымываются различные вещества. «Кислые дымы», растворяясь в воде, давали галогеновые кислоты, которые тут же реагировали с силикатами (основным компонентом горных пород) и извлекали из них эквивалентное количество металлов (прежде всего щелочных и щелочноземельных — Na, Mg, Ca, Sr, K, Li). При этом, во-первых, вода из кислой становилась практически нейтральной, а во-вторых, соли извлеченных из силикатов элементов переходили в раствор; таким образом, вода океана с самого начала была соленой. Концентрация катионов в морской воде совпадает с распространенностью этих металлов в породах земной коры, а вот содержание основных анионов (Cl–, Br–, SO4–, HCO3–) в морской воде намного выше того их количества, которое может быть извлечено из горных пород. Поэтому геохимики полагают, что все анионы морской воды возникли из продуктов дегазации мантии, а все катионы — из разрушенных горных пород.

Главным фактором, определяющим кислотность морской воды, является содержание в ней углекислого газа (CO2 — водорастворим, сейчас в океанах его растворено 140 трлн. т — против 2,6 трлн. т, содержащихся в атмосфере). В океанах существует динамическое равновесие между нерастворимым карбонатом кальция CaCO3 и растворимым бикарбонатом Ca(HCO3)2: при недостатке CO2 «лишний» бикарбонат превращается в карбонат и выпадает в осадок, а при избытке CO2 карбонат превращается в бикарбонат и переходит в раствор. Карбонатно-бикарбонатный буфер возник в океане на самом начальном этапе его существования, и с тех пор он поддерживает кислотность океанской воды на стабильном уровне.

Что касается атмосферы, то ее состав стал меняться в протерозое, когда фотосинтезирующие организмы начали вырабатывать (в качестве побочного продукта своей жизнедеятельности) свободный кислород; сейчас считается твердо установленным, что весь свободный кислород планеты имеет биогенное происхождение. Кислород, в отличие от углекислого газа, плохо растворим в воде (соотношение между атмосферным и растворенным в воде CO2 составляет, как мы видели, 1:60, а для O2 оно составляет 130:1), и потому почти весь прирост кислорода идет в атмосферу. Там он окисляет CO и CH4 до CO2, H2S — до S и SO2, а NH3 — до N2; самородная сера, естественно, выпадает на поверхность, углекислый газ и сернистый ангидрид растворяются в океане, и в итоге в атмосфере остаются только химически инертный азот (78%) и кислород (21%). Атмосфера из восстановительной становится современной, окислительной; впрочем, подробнее историю кислорода на Земле мы обсудим позднее, там, где речь пойдет о ранней эволюции живых существ (глава 5).

Помимо кислорода и азота, в атмосфере содержится небольшое количество так называемых парниковых газов — углекислый газ, водяной пар и метан. Составляя ничтожную долю атмосферы (менее 1%), они, тем не менее, оказывают важное влияние на глобальный климат. Все дело в особых свойствах этих газов: будучи сравнительно прозрачными для коротковолнового излучения, поступающего от Солнца, они в то же время непрозрачны для длинноволнового — излучаемого Землею в космос. По этой причине вариации в количестве атмосферного CO2 могут вызывать существенные изменения теплового баланса планеты: с ростом концентрации этого газа атмосфера по своим свойствам все более приближается к стеклянной крыше парника, которая обеспечивает нагрев оранжерейного воздуха путем «улавливания» лучистой энергии, — парниковый эффект.

Данный текст является ознакомительным фрагментом.