Неустранимая случайность

We use cookies. Read the Privacy and Cookie Policy

Неустранимая случайность

Итак, онтогенез — это процесс самоорганизации, в ходе которого согласованные действия множества одинаково запрограммированных клеток, следующих сравнительно простому набору правил поведения, приводят к самосборке сложных многоклеточных структур. Назовем это «главным принципом онтогенеза».

Есть такой афоризм (кстати, совершенно неправильный), что компьютерная модель — это такая штука, в которую что заложишь, то и получишь. Нет, модель — это усилитель для мозгов. Модель помогает просчитать и понять то, что мы не можем просчитать невооруженным мозгом. Если мозг не может создать новых знаний, то и модель не может. А если может мозг, то может и модель.

Так вот, в программу EvoDevo изначально ничего не заложено, кроме «главного принципа» — все записано в клетке, и эти записи для всех клеток одинаковые. Поэтому ее можно использовать для выяснения вопроса о том, что же следует из этого принципа. Какими свойствами должен обладать онтогенез многоклеточных, если известно, что он основан не на «чертеже» или «рецепте», а на алгоритме поведения клетки, одинаковом для всех?

Похоже на то, что многие странные, необычные свойства онтогенеза, над объяснением которых бьются эмбриологи, могут быть на самом деле неизбежными следствиями этого принципа. В таком случае для них не нужны специальные объяснения.

Первое такое свойство мы уже упоминали: это стохастичность — наличие неустранимого элемента случайности. Какого бы зверя мы ни попытались создать, фенотип всегда поначалу оказывается неустойчивым. Это значит, что при одном и том же генотипе из зиготы может сложиться такой зверь, какого мы хотели, а может и немного другой, а то и вовсе неожиданный.

По-видимому, онтогенезу реальных организмов тоже присуща такая стохастичность, которая, впрочем, обычно почти не проявляется из-за наличия специальных стабилизирующих адаптаций (помните, мы говорили о помехоустойчивости в главе 4). В программе EvoDevo стохастичность порождается прежде всего неодновременностью выполнения клетками предписанных действий: программа обрабатывает клетки по одной в случайном порядке, причем действия, совершенные одной клеткой, могут изменить условия для других. У реальных эмбрионов поведение клеток может быть лучше синхронизировано (хотя идеальная синхронизация все равно недостижима), зато в реальной жизни всегда есть непредсказуемые колебания условий среды — дополнительный источник хаоса в развитии. В любом развивающемся организме обязательно есть флуктуации, случайные различия между клетками на уровне биохимии и экспрессии генов. Активность гена невозможно отрегулировать с абсолютной точностью. Поэтому две клетки с одинаковыми геномами обязательно будут различаться по числу молекул тех или иных белков. Это ведет к различиям в поведении клеток.

Если внимательно рассмотреть работу транскрипционных факторов (ТФ), то станет понятно, почему нельзя отрегулировать работу генов, а значит и поведение клетки, с абсолютной точностью. Напомним, что ТФ распознают короткие (длиной примерно 10–20 нуклеотидов) участки ДНК — операторы, или сайты связывания ТФ, — и прикрепляются к ним. Сайты связывания ТФ часто располагаются перед началом регулируемого гена или в интронах. Прикрепление ТФ к сайту связывания либо способствует, либо, наоборот, препятствует работе ДНК-зависимой РНК-полимеразы — фермента, осуществляющего транскрипцию. В соответствии с этим ТФ делятся на индукторы (активаторы) и репрессоры.

До недавних пор было не очень понятно, каким образом ТФ находит свой сайт. Большинство молекулярных процессов в клетке основано на взаимном узнавании молекул, подходящих друг к другу как ключ к замку (см. главу 2). Обычно для того, чтобы нужные молекулы нашли друг друга, достаточно хаотических процессов — диффузии и броуновского движения. Чтобы можно было всерьез рассчитывать на случайную встречу фермента (например, алкоголь-дегидрогеназы) и его лиганда[93] (в данном случае этилового спирта), этих молекул в клетке должно быть достаточно много.

Но транскрипционные факторы — товар штучный. Часто клетка синтезирует лишь по несколько молекул того или иного ТФ. В еще большей степени это относится к их лигандам, т. е. сайтам связывания. Иногда во всем геноме есть только одно-единственное место, к которому данный ТФ может прикрепиться. Как ТФ находит его среди миллионов нуклеотидов?

В 2007 году биологи из Гарвардского университета сообщили о первом прямом наблюдении за деятельностью транскрипционного фактора в живой клетке (Elf et al., 2007). Ученые использовали классический объект — кишечную палочку E. coli и ее вдоль и поперек изученный lac-оперон (опероном называют группу из нескольких соседних генов, регулируемых и транскрибируемых совместно и обычно участвующих в выполнении общей функции).

lac-оперон состоит из трех генов, необходимых для усвоения лактозы. Непосредственно перед опероном располагается ген транскрипционного фактора — репрессора lacI. Когда в клетке нет лактозы, lacI прикрепляется к своему сайту (оператору O1), тем самым блокируя транскрипцию lac-оперона. Когда в клетке появляется лактоза, ее производное (аллолактоза) присоединяется к белку lacI. В результате белок меняет свою трехмерную структуру и отсоединяется от оператора. Это позволяет РНК-полимеразе приступить к прочтению lac-оперона, и клетка начинает производить ферменты, требующиеся для утилизации лактозы.

Цветки с четырьмя и пятью лепестками на одной и той же ветке сирени — проявление стохастичности онтогенеза. Генетическая «программа развития» у цветков заведомо одна и та же, раз они находятся на одном растении и даже на одной кисти. Списать наблюдаемую изменчивость на различия условий среды тоже не удается, потому что распределение пятилепестковых цветков случайно.

Исследователи изготовили генно-модифицированную кишечную палочку, присоединив к гену lacI ген желтого флуоресцирующего белка. Химерный белок, синтезируемый на основе измененного гена, сохранил свои регуляторные свойства, но стал светящимся, что позволило наблюдать за ним под микроскопом.

Оказалось, что, фотографируя бактерий с большой выдержкой (1 с), можно отличить свободно плавающий в цитоплазме белок от прикрепившегося к своему сайту на хромосоме. В первом случае белок быстро перемещается по клетке, свет от него поступает из разных точек и «размазывается». Во втором становится видна яркая точка, поскольку молекула ДНК, к которой прикрепляется ТФ, относительно неподвижна. В каждой клетке таких точек может быть одна или две в зависимости от того, в какой стадии жизненного цикла находится клетка. Оператор О1 в геноме всего один, но в ходе подготовки клетки к делению хромосома реплицируется (удваивается), и если lac-оперон уже реплицирован, то в клетке оказывается сразу два оператора О1, к каждому из которых может прикрепиться транскрипционный фактор.

При добавлении в среду лактозы яркие точки, как и следовало ожидать, быстро исчезали. При последующем разбавлении среды, ведущем к снижению концентрации лактозы, точки через некоторое время появлялись вновь.

Выяснилось, что одной молекуле lacI требуется не более 6 мин, чтобы найти на хромосоме свой оператор. Поскольку белок-репрессор присутствует в клетках не в одном, а в нескольких экземплярах, отключение lac-оперона происходит быстрее.

Чтобы понять, каким образом lacI ищет свой оператор, исследователи фотографировали клетки с разным временем выдержки. Результаты подтвердили гипотезу, согласно которой ТФ должен сначала связаться с ДНК неспецифически, т. е. в произвольном месте, а затем «ползать» вдоль ДНК, пока не наткнется на свой сайт (такое ползание называется одномерной диффузией). Анализируя снимки, ученые обнаружили, что молекулы lacI, не закрепленные на своих сайтах, могут находиться в одном из двух состояний, соответствующих одномерной и трехмерной диффузии. В первом случае они движутся примерно на порядок медленнее.

Выяснилось, что в процессе поиска своего сайта lacI проводит 87 % времени, будучи неспецифически связанным с ДНК и ползая вдоль нее (одномерная диффузия). Остальное время уходит на свободное перемещение по цитоплазме (трехмерная диффузия). Каждый сеанс ползания занимает не более 5 мс. За это время ТФ успевает «просмотреть» около 85 нуклеотидов. Размер генома кишечной палочки — около 5 млн нуклеотидов, поэтому в целом на поиск уходит несколько минут.

У высших организмов, таких как млекопитающие, геном которых в сотни раз больше, технология поиска транскрипционными факторами своих сайтов должна быть как-то оптимизирована, иначе на поиск уходили бы часы и даже сутки. И она действительно оптимизирована, например при помощи особых способов упаковки ДНК, оставляющих лишь небольшую часть генома доступной для «поисковых работ» ТФ.

Так или иначе, знакомство с клеточными технологиями регуляции генов не оставляет места для сомнений в том, что в поведении клеток присутствует неустранимый элемент случайности. ТФ ищет свой сайт связывания методом случайного поиска, поэтому время включения того или иного гена у двух идентичных клеток, находящихся в абсолютно одинаковых условиях, может заметно различаться. Следовательно, и онтогенез, контролируемый генетической программой поведения клетки, должен «по умолчанию» быть довольно стохастичным процессом.

Данный текст является ознакомительным фрагментом.