Монстры и макроэволюция

Предположим, что некая мутация, случившаяся десятки миллионов лет назад, привела к появлению вполне жизнеспособного «монстра». Но как нам доказать, это этот «монстр» стал родоначальником нового надвидового таксона? Заглянуть в прошлое и реконструировать ход событий на уровне генов позволяют методы молекулярной филогенетики вкупе с генетикой развития. Сопоставляя признаки разных организмов с информацией о структуре и работе генов, регулирующих их индивидуальное развитие, ученые могут строить и проверять модели, объясняющие механизмы возникновения крупных новаций. Этот подход лежит в основе нового научного направления — эволюционной генетики развития, часто называемой «эво-дево» (evo-devo). Рассмотрим его на примерах.

Пример 1. Двусторонняя симметрия цветков Iberis.

Для Arabidopsis, пастушьей сумки и подавляющего большинства других представителей семейства крестоцветных характерны цветки с лучевой симметрией венчика. Все 4 лепестка у них одинаковы по форме и размерам, и располагаются они под прямым углом друг к другу. У растений рода Iberis (иберис или стенник), однако, мы встречаем цветки с отчетливой двусторонней симметрией: два верхних лепестка у них заметно мельче, чем два нижних. Какие же причины привели к появлению таких цветков — и как нам доказать их эволюционную преемственность с цветками других крестоцветных?

Сверху: радиально-симметричные цветки резуховидки Таля (Arabidopsis thaliana) Снизу: двусторонне-симметричные цветки ибериса (Iberis amara)

Чтобы ответить на этот вопрос, нужно найти ген или гены, отвечающие за формирование двусторонне-симметричного венчика у Iberis. Ближайший модельный объект, по аналогии с которым можно было бы искать такие гены — это, конечно же, Arabidopsis. У него, однако, неизвестны мутации, приводящие к появлению двусторонне-симметричных цветков, а значит и гены, которые можно заподозрить в причастности к этому. Такие гены — CYCLOIDEA (CYC) и DICHOTOMA (DICH) — хорошо изучены у львиного зева Anthyrrhinum (про первый из них уже шла речь в примере с пелорическими цветками льнянки). Этот модельный объект не состоит в тесном родстве с Iberis, но именно он дал ключ к дальнейшим поискам.

Геном Arabidopsis полностью расшифрован, и в нем найден только один ген, имеющий сходную последовательность с CYC львиного зева. Этот ген, названный TCP1, в норме заметно не влияет на строение цветка резуховидки. Можно предположить, однако, что у Iberis тоже есть TCP1-подобный ген, и именно он определяет формирование двусторонней симметрии у венчика. А. Буш и С. Цахго (Busch & Zachgo, 2007) проверили эту гипотезу и подтвердили её.

У Iberis был выделен ген IaTCP1, очень близкий по своей последовательности гену TCP1 Arabidopsis. Этот ген включается на поздних этапах формирования цветка, вызывая активное деление клеток в зачатках двух нижних лепестков и, соответственно, их быстрое увеличение в размерах. В отличие от Iberis, ген TCP1 у Arabidopsis (как и CYC у львиного зева) экспрессируется на самых ранних стадиях развития цветка, когда зачатки лепестков только-только начинают формироваться. Таким образом, появление двусторонне-симметричных цветков Iberis есть результат изменения места и, главное, времени включения уже имеющегося гена.

Данный пример показывает, что весьма крупное новшество в строении цветка, позволившее выделить Iberis в самостоятельный род, возникло не ex nihilo. Если допустить версию о независимом творении этого рода, останется непонятным, почему ген IaTCP1 столь похож по своей структуре на TCP1 Arabidopsis, а они оба могут быть выявлены по сходству с CYC-подобными генами львиного зева. Конечно, мы не могли пронаблюдать сам процесс возникновения Iberis, но дошедшие до нас следы этого события недвусмысленно указывают на преемственность между этим родом и другими группами крестоцветных.

Литература

Busch A., Zachgo S. 2007. Control of corolla monosymmetry in the Brassicaceae Iberis amara. PNAS 104 (42): 16714-16719.

Пример 2. Почему у орхидей такие разнообразные цветки?

Семейство орхидные (Orchidaceae) — второе по величине среди цветковых растений. Оно насчитывает около 30 тысяч видов, поражающих разнообразием и изысканностью своих цветков. За их красотой, однако, стоит суровая утилитарность: цветок орхидеи приспособлен для опыления строго определённым опылителем (60 % видов орхидей опыляются лишь одним видом животных, главным образом насекомых). Но почему именно у орхидных (а не у лилейных, например) появлось такое разнообразие цветков? Ответ на этот вопрос дают недавние работы М. Мондрагон-Паломино с соавторами (Mondrag?n-Palomino & Thei?en, 2008, 2009; Mondrag?n-Palomino, 2009), проливающие свет и на происхождение этого огромного семейства.

При всем своем разнообразии цветки орхидей имеют сходный план строения: как правило, их трудно перепутать с цветками растений из других семейств. Для подавляющего большинства орхидей характерна отчетливая двусторонняя симметрия цветка. Околоцветник всегда состоит из шести элементов, расположенных в два круга по три. Обычно листочки наружного круга околоцветника (иногда неверно называемые «чашелистиками») примерно одинаковы по форме и размерам (T1-T3 на схеме внизу), в то время как средний элемент внутреннего круга (t3, губа) как правило резко отличается от двух боковых листочков (t1 и t2). Губа играет важную роль во взаимодействии с опылителем, а потому её строение бывает особенно замысловатым.

Схема строения околоцветника орхидей на примере Dendrobium cariniferum (из статьи Mondrag?n-Palomino & Thei?en, 2008)

Сверху: радиально-симметричный цветок у Spiloxene serrata, представителя семейства гипоксиевые (Hypoxidaceae) из Южной Африки. Снизу: симметрия цветка орхидей Apostasia wallichii (подсемейство Apostasioideae) из Новой Гвинеи близка к радиальной (http://www.orchidspecies.com/apostwallichii.htm).

Орхидеи: ваниль (Vanilla planifolia, подсемейство Vanilloideae) из тропиков Нового Света (http://www.dragonagro.com/wholesale_orchids.htm); Венерин башмачок (Cypripedium calceolus, подсемейство Cypripedioideae), Ленинградская область; ятрышник шлемоносный (Orchis militaris, подсемейство Orchidoideae), Ленинградская область; дремлик болотный (Epipactis palustris, подсемейство Epidendroideae), Ленинградская область.

Ближайшим родственником орхидных является семейство гипоксиевые (Hypoxidaceae); к нему относятся травянистые растений с радиально-симметричными цветками. Само же семейство Orchidaceae состоит из пяти подсемейств: Apostasioideae (небольшая группа орхидей, встречающихся в Непале, Японии, Китае, Новой Гвинее и Австралии), Vanilloideae (например, ваниль), Cypripedioideae (сюда относится венерин башмачок), Orchidoideae (например, ятрышник или любка) и Epidendroideae (80 % видов орхидей, в их числе дремлик, гнездовка, тайник и др.). Эти подсемейства отчетливо различаются по особенностям цветка; кроме того, их выделение подтверждено данными молекулярной филогенетики. Среди них подсемейство Apostasioideae — явно самое древнее и примитивное: венчик у его представителей почти радиально-симметричный, есть и ряд других архаичных особенностей.

Родственные связи между Hypoxidaceae и подсемействами орхидных (из статьи Mondrag?n-Palomino & Thei?en, 2008). Филогенетическое дерево, построено путем анализа последовательностей ДНК нескольких пластидных генов (rbcL, matK, atpB), взятых у большого числа видов из всех перечисленных семейств и подсемейств. Хотя эти гены не имеют отношения к развитию цветка, полученная на их основе схема родственных связей хорошо согласуется с имеющимися представлениями об эволюции этого органа у орхидных, в частности — с тенденцией к переходу от радиальной к двусторонней симметрии околоцветника.

У всех изученных цветковых растений в регуляции образования околоцветника участвуют так называемые гены В-класса, подобные генам DEFICIENS (DEF) и GLOBOSA (GLO) львиного зева (им соответствуют APETALA3 и PISTILLATA у Arabidopsis). Мы не будем обсуждать АВС-модель и более современные концепции, объясняющие работу этих генов (подробности можно посмотреть здесь или здесь). Нам важно лишь отметить, что у многих растений имеется только один DEF-подобный и один GLO-подобный ген, которые и обеспечивают формирование у них нормальных цветков.

У орихидных, однако, дело обстоит гораздо интереснее. Как обнаружила М. Мондрагон-Паломино и её коллеги, у них есть целых четыре DEF-подобных гена, и каждый из них выполняет свою функцию. Условно говоря, гены 1 и 2 определяют, что органы, формирующиеся под их контролем, станут именно листочками околоцветника, а не листьями, тычинками или плодолистиками; ген 3 задаёт отличия элементов внутреннего круга околоцветника от наружного, а ген 4 отвечает за образование губы и ее отличия от боковых листочков. Столь сложная система регуляции и обеспечивает разнообразие морфогенетических возможностей для цветков орхидных. Мы видим, в частности, что за формирование губы у орхидей отвечает спецальный ген: не случайно некоторые морфологи трактовали эту часть околоцветника как совершенно особый орган.

Четыре DEF-подобных гена обнаружены у представителей всех четырех подсемейств орхидных (Vanilloideae, Cypripedioideae, Orchidoideae и Epidendroideae), исследованных М. Мондрагон-Паломино. У гипоксиевых же найдены только два таких гена, причем один из них близок по структуре к генам 1 и 2 у орхидей, а другой — к их генам 3 и 4. Эти данные показывают, что у предков орхидных произошло два цикла удвоения DEF-подобных генов с последующим «разделением труда» между получившимися копиями. Вероятно, такое удвоение и стало той ключевой инновацией, которая предопределила нынешнее разнообразие и эволюционный успех орхидных.

Четыре DEF-подобных гена орхидных сравнительно сильно различаются между собой по нуклеотидным последовательностям. Это неудивительно — ведь их функции различны. Важно другое: если методами молекулярной филогенетики проанализировать последовательности любого из этих генов (скажем, 1 или 3), взятые у представителей различных подсемейств орхидных, то получатся практически одинаковые филогенетические деревья, совпадающие с деревом на рисунке, приведенном выше.

Таким образом, М. Мондрагон-Паломино и её соавторы обосновали биологически осмысленную модель происхождения и эволюции крупной и своеобразной группы растений. Эта модель демонстрирует преемственность между DEF-подобными генами гипоксиевых и орхидных, хорошо согласуется с данными как сравнительной анатомии цветка, так и с результатами молекулярно-филогенетического анализа. Мы видим, что убедительный сценарий крупного макроэволюционного события — каковым, безусловно, было появление орхидных — совершенно не нуждается в привлечении каких-либо сверхестественных факторов.

Впрочем, мы пока ничего не знаем про гены, регулирующие формирование околоцветника у Apostasioideae, самой примитивной группы орхидных. Очень интересно, сколько DEF-подобных генов окажется у них. На основе имеющегося эволюционного сценария можно предположить, что этих генов окажется либо два (как у гипоксиевых), либо четыре (как у остальных орхидных), либо три (ведь апостасиевые вполне могут рассматриваться как переходная группа между двумя семействами), но никак не один и не больше четырех. Время делать ставки!

Литература:

Mondrag?n-Palomino M., Thei?en G. 2008. MADS about the evolution of orchid flowers. Trends in Plant Science 13 (2): 51–59.

Mondrag?n-Palomino M., Thei?en G. 2009. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany, advanced online access, Jan 13 2009.

Mondrag?n-Palomino M., L. Hiese, A. H?rter, M.A. Koch, and G. Thei?en. 2009. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evolutionary Biology 9:80