Солнце

Солнце

В середине всего пребывает Солнце. И кто же поместил бы сей светоч в этом прекрасном храме в иное или лучшее место, чем то, откуда он может равно освещать все. Не без основания поэтому одни называют его светочем мира, другие Разумом, иные Управителем, Трисмегист – зримым богом, Электра – Софокла – всевидящим. Итак, как бы восседая на царском троне, Солнце управляет семьей окружающих его звезд.

Коперник

У Козьмы Пруткова есть такое изречение: «Если у тебя спрошено будет: что полезнее, Солнце или месяц? – ответствуй: месяц. Ибо Солнце светит днем, когда и без того светло, а месяц – ночью». Конечно, ни один из читателей не соблазнится этой остроумной чепухой. Днем светло потому, что светит Солнце, и ночью от Луны также есть свет, потому что где-то светит то же Солнце и Луна отражает его лучи на Землю. Загородившись от прямых солнечных лучей козырьком фуражки или зонтиком, мы не мешаем Солнцу освещать воздух, облака, поля и все окружающее. Солнце может быть скрыто облаком, но лучи его, рассеиваясь воздухом, по-прежнему освещают Землю. Но если между Землей и Солнцем на достаточно большом удалении очутится большой непрозрачный предмет, он может не пропустить прямых лучей Солнца в земную атмосферу, свет исчезнет. Так и бывает во время солнечных затмений, когда Земля, Луна и Солнце попадают на одну прямую линию.

Свет, доходящий до человека (разумеем как видимые, так и невидимые лучи), может быть троякого происхождения. На Землю падают прямые солнечные лучи, которые мы стараемся видеть возможно реже. Оси наших глаз обычно направлены горизонтально, и Солнце стоит перед глазами только на восходе и закате. Днем непрерывно к нам в глаза доходят рассеянные солнечные лучи. Небесная лазурь – результат рассеяния солнечных лучей молекулами воздуха. Если рассеивающие частицы очень малы, то более всего рассеиваются лучи с короткими длинами волн (в видимом спектре – синие и фиолетовые). Иначе обстоит дело, если частицы крупные, тогда довольно сильно рассеиваются и более длинные волны. В этом очень легко убедиться, закурив папиросу. Цвет дыма папиросы, выходящего с зажженного конца, голубой, а со стороны мундштука – белый. Объясняется это тем, что частицы дыма, пройдя толщу табака, слипаются, становятся крупными. Точно так же рассеянный свет облаков, состоящих из крупных капелек влаги, белый, в то время как цвет чистого неба голубой. Если бы Земля была без атмосферы, мы видели бы Солнце на совершенно черном небе.

На высоте 20–22 км над Землей из гондолы стратостата наблюдатели видели над собой именно такое, почти черное небо при сияющем Солнце.

Зори, зеленый цвет полей и лесов, белизна снегов, сияние Луны – все это отраженный или рассеянный свет Солнца.

Но помимо прямого и рассеянного солнечного света до нас доходят лучи, от Солнца не зависимые. Всякое нагретое тело излучает свет. Если нагревание очень велико, в этом свете много видимых лучей; если нагревание незначительно, излучаются невидимые инфракрасные лучи, которые можно обнаружить по тепловым их действиям. Кругом нас все нагрето. Если мы и называем одни тела теплыми, другие холодными, то делаем это условно, по отношению к температуре нашего тела. Совершенно охладить тело – это значит остановить движение его частиц. Такое охлаждение возможно только приблизительно при –273° по Цельсию (абсолютный нуль температуры). На Земле же все теплое, и поэтому все светится видимыми или невидимыми лучами; светится и сам человек, светятся и его глаза. В этом смысле древние, приписывавшие глазу «кроткий внутренний огонь», оказались правыми. Энергия этих внутренних лучей глаза такова, что если бы глаз чувствовал их так же, как, положим, зеленые лучи, то его постоянно сопровождало бы и днем и ночью свечение с яркостью примерно в 5 млн свечей.

Нам шлют видимые лучи звезды – удаленные солнца, туманности, иногда небосклон прорезывают блистающие молнии или загораются причудливые северные сияния. В летней листве ночью светятся светляки, а в лесу гнилушки. Молнии вместе с видимым светом излучают и невидимые электромагнитные волны; и в ясную погоду по радио слышны страстные потрескивания в приемнике, мешающие приему, – это электромагнитные атмосферные разряды. Наблюдая эти разряды, А. С. Попов и пришел к открытию радио. За последние годы с несомненностью выяснилось, что Солнце и звезды также излучают радиоволны. Во время Второй мировой войны радиоизлучение Солнца и других светил составляло иногда существенную помеху правильной работе радиолокации. В Земле идет медленный распад некоторых атомов, радиоактивный процесс, сопровождающийся, в частности, излучением световых гамма-лучей с очень короткими волнами.

Помимо этого света, доходящего до человека вследствие естественных процессов на Земле и во вселенной, человек создает себе по мере надобности искусственные источники света. Он зажигает дерево, керосин, свечи, пользуется электрическими лампами накаливания, в которых металлические нити нагреваются электрическим током. В новых, более совершенных люминесцентных лампах электрический ток вызывает сначала разряд в парах ртути, сопровождающийся испусканием ультрафиолетовых лучей. Эти лучи поглощаются затем на стенках стеклянной трубки, покрытой изнутри люминесцирующим составом, и превращаются в видимый свет. Всякая радиостанция – своего рода источник света, посылающий чрезвычайно длинные волны. Для научных и медицинских целей устраиваются трубки Рентгена, излучающие невидимый свет, легко проходящий сквозь человеческое тело.

Рис. 8

Схема спектроскопа (чертеж Ньютона)

Но энергия всех этих светочей, в отдельности и вместе взятых, поистине ничтожна по сравнению с энергией свечения Солнца. Нужно вспомнить, что в конечном итоге, зажигая лампу, заставляя работать радиостанцию или трубку Рентгена, мы потребляем ничтожную часть солнечной энергии, накопленной в виде угля, нефти и дров растениями. Пользуясь энергией ветра, водопадов и водохранилищ, мы снова применяем энергию солнечного света, вызывающую ветер, подымающую воду. Поэтому ясно, что ни один искусственный источник не может конкурировать с Солнцем в смысле общей излучаемой энергии.

Причина, заставляющая человека пользоваться наряду с Солнцем собственными скромными искусственными источниками света не только ночью, но и днем, «сидеть днем с огнем», кроется в том, что во многих случаях важно не только количество световой энергии, но также ее основное качество, ее спектральный состав.

Мы знаем, что впервые Ньютон ввел это важнейшее понятие о спектральном составе света. Опыт Ньютона с призматическим разложением солнечного света стал прообразом всех разнообразных спектроскопов, применявшихся и применяемых в науке. На рисунке 8, сделанном по чертежу самого Ньютона, ясна идея простейшего ньютоновского спектроскопа. Свет падает на узкую щель, за ней помещается линза так, что щель находится почти в фокусе последней. Из линзы пучок света падает на призму, здесь – преломляется и попадает в зрительную трубу, установленную «на бесконечность». В окуляр трубы видно изображение щели спектроскопа в каждом из цветов, из которых состоит исследуемый сложный цвет. Если бы щель была очень широкой, изображения накладывались бы друг на друга, спектр был бы нечистым, цвета в нем были несколько смешанными.

Если перед щелью спектроскопа поставить керосиновую или электрическую лампу, мы увидим в зрительную трубу непрерывное чередование цветов, от красного до фиолетового. Вместо глаза можно поместить фотографическую пластинку, тогда за фиолетовым концом обнаружится короткое ультрафиолетовое продолжение. Но и глаз и пластинка не пригодны для суждения о распределении энергии в спектре; они имеют свои узкие области особенной чувствительности и почти не отвечают на соседние участки. Глаз особенно чувствителен к зеленой части спектра, обыкновенная пластинка – к синей и фиолетовой. Чтобы судить об энергии, лучше всего воспользоваться тепловым прибором, в котором поглощаются полностью любые лучи, превращаясь в тепло (термоэлемент). К несчастью, такие приборы, даже при самом тщательном выполнении, чрезвычайно мало чувствительны по сравнению с глазом или фотографической пластинкой. На рисунке 9 показано распределение энергии, измеренное таким способом для некоторых источников света. По горизонтальной оси отложены длины волн в микронах (напоминаем, что 0,4 µ соответствуют фиолетовому краю видимого спектра, а 0,7 µ – красному краю). По вертикальный оси нанесена энергия в относительных единицах, так что для каждого источника энергия при 0,59 µ приравнена условно к 100. Кривая 2 дает распределение энергии в видимой части солнечного спектра, кривая 1 – в голубом свете неба; мы видим, что благодаря рассеянию максимум энергии перекочевал в синюю часть. Кривая 3 дает распределение энергии в электрической лампочке.

Рис. 9

Распределение энергии в спектре разных источников

Если накаливать различные твердые тела, например металлы, до одной и той же высокой температуры, то распределение энергии у них будет несколько разным. Различие вызывается неодинаковостью отражательной способности поверхности накаливаемого тела. Если поверхность сделать совершенно черной, т. е. поглощающей полностью все лучи и ничего не отражающей, то распределение энергии при одной и той же температуре будет одно и то же для любого тела.

В нагретом теле энергия движения молекул переходит в свет и, обратно, свет поглощается молекулами. Для каждой данной температуры устанавливается равновесие между поглощением и излучением света.

В главе о свете мы пришли к выводу, что излучение и поглощение света не может происходить иначе как целыми квантами h?. Рассматривая равновесие между излучением и поглощением в теле с совершенно черной поверхностью и учитывая квантовый характер обоих процессов, можно довольно легко и вполне строго вывести закон распределения энергии света, испускаемого черным телом. Исторически решение задачи протекало как раз наоборот. В поисках правильного, соответствующего опыту, спектрального закона излучения черного тела М. Планк впервые убедился, что этот закон нельзя вывести иначе, как сделав предположение о квантовом характере излучения и поглощения света. На этом пути и произошло чреватое последствиями открытие квантовых законов природы.

На рисунке 10 изображен закон «черного излучения» для нескольких температур. По горизонтальной оси чертежа отложены длины световых волн в микронах (1 µ = 1000 mµ), по вертикальной – интенсивность, или энергия, в относительных единицах. Из рисунка видно, что по мере повышения температуры максимум спектральной кривой перемещается в сторону коротких волн. Это отвечает искони известному постепенному переходу накаливаемого металла от красного каления к белому. Теоретический закон распределения энергии в спектре черного тела подтверждается на опыте со всей доступной в наше время точностью. Частное следствие этого закона состоит в том, что произведение длины волны ?, соответствующей максимуму спектральной кривой, на абсолютную температуру (т. е. температуру Цельсия +273°) Т есть величина постоянная

?maxT = K = 2897,18 микрон ? град.

Зная величину ?mах (в микронах), можно на основании этой формулы по спектру определить температуру тела.

Мы обратились к спектральному распределению света в связи с вопросом о качестве солнечного света. Солнце, несомненно, есть накаленное тело, поэтому его спектр должен быть близок к спектрам, получаемым на Земле от наших ламп и свечей. В плохой спектроскоп с широкой щелью солнечный спектр действительно кажется непрерывным. При грубом измерении распределения энергии в этом спектре получается кривая, похожая на одну из кривых для черного излучения (рис. 10). По виду этой кривой, а также из положения ее максимума можно вычислить приближенно температуру солнечной поверхности, если только предположить, что Солнце похоже на накаленное тело с черной поверхностью. Вычисление дает около 6000°. Установление более точной цифры имеет мало смысла, так как разные области солнечного диска различаются по накалу.

Рис. 10

Распределение энергии в спектре излучения черного тела при разных температурах

По оси абсцисс – длина волны в микронах, по оси ординат – интенсивность в относительных единицах. (Ввиду огромной разности в интенсивностях кривая для 6000° К на рис. 10 а не может быть полностью изображена в выбранном масштабе. На рис. 10 б приведена полная кривая для 6000° К в другом масштабе.)

Заштрихованная часть отмечает область видимого спектра

Наш глаз в смысле различения качества света много хуже самого плохого спектроскопа. Поэтому приведенные грубые результаты будут достаточны, когда в следующей главе придется сравнивать свойства солнечного света и глаза.

Физик и астроном, изучая Солнце, пользуются телескопами, совершенными спектроскопами, постоянно применяют вместо глаза фотографию. Им открываются такие детали солнечного света и его распределения по Солнцу, которые совершенно ускользают от невооруженного глаза.

В 1802 году Волластон заметил свойство солнечного спектра, почему-то ускользнувшее от внимания Ньютона. Спектр оказался испещренным черными тонкими линиями. Позднее эти темные пропасти на ярком фоне солнечного спектра подробно изучил Фраунгофер; их называют поэтому линиями Фраунгофера. В таблице 1 даны главные линии Фраунгофера для видимого спектра. Ими часто пользуются для указания той или иной области солнечного спектра. Они всегда остаются на своих местах и служат естественными отметками на спектре Солнца. Во втором столбце указаны длины волн в миллимикронах, в третьем – цветность спектральной области, в которой линии расположены.

Таблица 1

Мы сказали выше, что в плохой спектроскоп солнечный спектр кажется непрерывным, а кривая распределения энергии – правильной и плавной. Детальное изучение кривой распределения показывает, что она сплошь изъедена зазубринами как в видимой, так и в невидимой области (рис. 11). Эти зазубрины – следы линий Фраунгофера. В ультрафиолетовой области солнечный спектр довольно резко обрывается, причем граница колеблется в разное время дня и в разные времена года. Практически от Солнца до нас не доходят лучи с волнами короче 290 mµ. Более короткие волны поглощаются озоном, находящимся в верхних слоях атмосферы с максимумом около 30 км.

Рис. 11

Распределение энергии в спектре Солнца По оси абсцисс – длина волны в микронах, по оси ординат – интенсивность в относительных единицах

Как объяснить отсутствие некоторых цветов в солнечном спектре? Внесем в бесцветное спиртовое или газовое пламя поваренную соль. Пламя становится ярко-желтым; если посмотреть в спектроскоп (хороший), то сплошного спектра почти не видно, видны только рядом две желтые линии, длины волн которых в точности совпадают с фраунгоферовыми линиями D1 и D2. Точность совпадения такова, что она не может быть случайной. Разница в том, что в случае пламени получаются светящиеся линии на темном фоне, а от Солнца, наоборот, черные линии на блестящем фоне спектра.

В пламени соль распадается на хлор и натрий, светится натрий. Естественно предположить, что черные D-линии на Солнце вызываются также парами натрия. Действительно, если на пути непрерывного спектра, например от лампы накаливания, поместить сосуд с парами металлического натрия или газовое пламя, окрашенное солью, то области, соответствующие D-линиям, ослабляются, мы искусственно получим фраунгоферовы линии на фоне сплошного спектра. Стало быть, пары натрия способны и поглощать и излучать D-линии; осторожнее следует сказать, что в парах натрия громадное большинство атомов способно поглощать свет. Но, поглотив кванты света D-линий, атомы становятся «возбужденными», далее излучения не поглощают и, наоборот, через некоторое время отдают захваченную энергию в виде света. Иными словами, в накаленных парах соли есть нормальные, поглощающие атомы натрия и возбужденные, уже поглотившие и затем светящиеся.

В парах каждого элемента теми или иными способами можно возбудить свечение, состоящее из отдельных тонких спектральных линий. Число этих линий может быть очень большим. Это указывает на многообразие состояний, в которых атом может существовать «возбужденным».

Атомные линейные спектры, так же как и непрерывный спектр черного тела, оказались подчиняющимися квантовым законам. Это значит, в частности, что в них проявляется та же квантовая постоянная h. С другой стороны, линейные спектры есть выражение внутреннего строения атомов. Следовательно, строение атомов, подобно свету, подчиняется квантовым законам. Квантовые закономерности обнаруживаются также в спектрах и строении молекул. В весьма разреженном газообразном состоянии молекулы излучают «полосатые» спектры. При помощи спектральных приборов полосы удается разделить на множество очень тонких линий. Положение этих линий следует довольно простым квантовым законам. Мы убеждаемся еще раз, что у света и вещества есть важнейшие общие, родственные черты.

Вернемся к линейным спектрам. Итак, у каждого элемента есть свои оптические приметы – спектральные линии, положение которых можно точно измерять и которые трудно смешать с другими. Находясь на Земле, можно по спектрам изучать химию Солнца и других светил. Пары элементов в солнечной атмосфере, пропуская на Землю сплошной спектр солнечного ядра, оставляют на нем свои следы в виде фраунгоферовых линий. В таблице 1 в последующем столбце указано, каким элементам соответствуют линии.

Рис. 12

Сравнение среднего относительного числа атомов различных химических элементов на поверхности Солнца и в земной коре

Часть линий получается от поглощения солнечного света в земной атмосфере, что также отмечено в таблице. Большинство химических элементов, находящихся на Земле, обнаружено и на солнечной поверхности. Не найдены главным образом такие тяжелые элементы, как золото, ртуть, таллий, висмут, радий и пр.

На рисунке 12 сравнивается количество атомов различных химических элементов в земной коре (крестики) и на поверхности Солнца (кружки). Слева отложены логарифмы относительных количеств элементов; это значит, что, например, цифра 5 соответствует 105 атомов. Мы видим, что относительные количества некоторых атомов на поверхности Земли и Солнца расходятся очень сильно. Наоборот, почти совпадают такие элементы, как натрий, кремний, кальций, стронций. Отсутствие спектральных линий не может еще служить признаком отсутствия элемента. Линии могут лежать в ультрафиолетовой области, не доходящей до Земли. Ультрафиолетовый спектр Солнца закрыт от земного наблюдателя главным образом озоном, находящимся в земной атмосфере и сосредоточенным преимущественно в стратосфере на высотах 20–30 км.

Рис. 13

Одиннадцатилетний период солнечных пятен

На Солнце найдены не только атомы, но и простейшие молекулы, например ОН, CN, СаН, Н2 и т. д.

Размеры Солнца огромны: поперечник его составляет около 1 400 000 км, т. е. в 110 раз больше, чем у Земли, а объем в 1 305 000 раз больше объема Земли. Но Земля значительно плотнее; средняя плотность Солнца по сравнению с водой 1,406, а Земли – 5,6. Общее количество вещества на Солнце в 330 420 раз больше, чем на Земле. Если выразить количество солнечного вещества в тоннах, то получится мало вразумительное число 2 · 1027 (т. е. к двойке надо подписать 27 нулей); если бы Солнце теряло каждую секунду по миллиарду тонн, то для того чтобы «похудеть» наполовину, ему потребовалось бы 30 миллиардов лет!

Рис. 14

Периодичность солнечных пятен и параллелизм числа пятен и земных магнитных возмущений (верхняя кривая)

Это гигантское скопление вещества мы знаем только с поверхности. Внутренняя жизнь Солнца не известна, о ней можно только догадываться. Поверхность Солнца далеко не однородна: если мы говорим о распределении энергии солнечного света, о его температуре, то разумеем всегда грубую среднюю величину. Видимое путешествие Солнца по небу сопровождается также кажущимся изменением распределения энергии в его спектре. На восходе и на закате Солнце кажется красным, его лучам приходится преодолевать бо?льшую толщу атмосферы, чем в зените.

На поверхности Солнца, главным образом в экваториальной области, почти всегда имеются пятна. Пятна бывают иногда настолько большими, что их легко видеть глазом через закопченное стекло. В китайских летописях сохранилась запись о наблюдениях солнечных пятен невооруженным глазом еще в 28 году до н. э. В 1858 году на солнечном диске было видно пятно длиною в 230 000 км, т. е. в 18 раз больше диаметра Земли. Пятно занимало 1/36 общей видимой поверхности Солнца. Пятна имеют разнообразные формы с темным ядром в середине и более светлой каймой снаружи.

Спектроскопическое исследование показывает, что в области пятен находится главным образом водород и пары кальция. Вокруг пятен вращаются гигантские вихри, циклоны, состоящие иногда из потоков электрически заряженных частиц. Возникающие электрические токи сопровождаются огромными магнитными полями, вызывающими изменение (расщепление) спектральных линий. Эти спектральные изменения и позволяют обнаружить солнечные вихри.

Число пятен на Солнце изменяется периодически; длина периода около 11 лет. На рисунке 13 приведена кривая, доказывающая такую периодичность. По горизонтальной оси нанесены годы, по вертикальным – относительные числа пятен. Кривая охватывает громадный, почти двухвековой период, с 1749 по 1947 год. Периодичность выражена с полной очевидностью. Перед нами несомненный и очень важный для жизни Земли закон солнечной деятельности. На рисунке 14 повторена часть той же кривой, с 1836 по 1926 год, но здесь она составлена с кривой магнитных возмущений на Земле за те же годы. Верхняя кривая изображает магнитные возмущения на Земле за те же годы. Очевиден параллелизм этих кривых. Таким образом, помимо тяготения и света между Солнцем и Землей существуют и другие посредники. Теперь известно, что от Солнца к Земле постоянно летят потоки отрицательно заряженных частиц – электронов. Эти электрические потоки отклоняются магнитными полюсами Земли в полярные области и вызывают изменения магнетизма на Земле, отмеченные на рисунке 14. С другой стороны, проникая в верхние разреженные слои земной атмосферы, быстро летящие электроны заставляют светиться находящиеся там газы. Так объясняются северные сияния. Число северных сияний в полярных областях показывает такую же периодичность, как и солнечные пятна и магнитные возмущения на Земле.

Изменения в числе солнечных пятен существенно влияют на перемены погоды и, следовательно, на растительность и на все живое на Земле. Так, например, толщина годичных колец на срезе ствола сосны меняется с явным одиннадцатилетним периодом, следующим за периодичностью солнечных пятен. На рисунке 15 кривая солнечных пятен за 1830–1910 годы сравнивается со средней кривой роста деревьев для нескольких европейских стран. Параллелизм вполне ясен и здесь, хотя картина осложняется действием других причин, не зависящих от солнечных пятен. Таким образом, несомненно, что солнечные пятна составляют важный фактор в жизни земной поверхности.

Рис. 15

Сравнение кривой солнечных пятен (нижняя кривая) со средней кривой роста деревьев для нескольких европейских стран

Внешнюю оболочку, которую мы только и видим на Солнце в обычных условиях, называют фотосферой. Эта оболочка имеет зернистое, гранулярное строение, особенно ясное, если снимать солнечный диск в монохроматическом свете отдельной спектральной линии, например водорода или кальция. Эти гранулы, разнообразных форм и размеров, очевидно соответствуют облакам и парам газов, плавающим в фотосфере. Если смотреть с вершины горы вниз на облака, то можно видеть такую же зернистость. Отдельные места фотосферы светятся особенно ярко; это так называемые факелы, в которых наиболее сильны линии кальция.

Во время полных солнечных затмений имеется возможность рассмотреть оболочку Солнца в деталях – мы видим ее как бы в поперечном разрезе. Фотосфера окружена тонким слоем красного цвета, так называемой хромосферой; в нее проникают факелы из фотосферы. Толщина хромосферы около 10 000 км. Из нее вылетают колоссальные фонтаны светящегося газа, так называемые протуберанцы, высота которых достигает иногда сотен тысяч километров. Протуберанцы бывают главным образом двух типов – облакообразные и взрывные. В первых преимущественно светится водород, как и в самой хромосфере, во вторых, наряду с водородом, сильно выражены линии металлических паров. За последнее время астрономы получили в свои руки новые удобные способы наблюдения протуберанцев в любое время, а не только при затмениях. Тщательно закрывая в телескопе солнечный диск до краев темным диском, применяя безукоризненные стекла (в смысле отсутствия рассеивающих пузырьков и свилей) и пользуясь, кроме того, хорошими светофильтрами, пропускающими только узкую часть спектра, можно наблюдать солнечные протуберанцы вне затмений. Кроме того, за последнее десятилетие разработаны весьма совершенные светофильтры, выделяющие практически только одну узкую спектральную линию. В результате стала вполне возможной кинематографическая съемка протуберанцев, открывающая такие особенности солнечных взрывов, которые ранее оставались совершенно скрытыми.

Между фотосферой и хромосферой расположен очень тонкий, так называемый обращающий слой, в котором, по-видимому, и возникают главные линии Фраунгофера.

Во время полных солнечных затмений наблюдается невооруженным глазом поразительное явление так называемой короны, простирающейся на миллионы километров от края Солнца. Корона имеет, вообще говоря, лучеобразную структуру. Иногда лучи приблизительно равномерно окружают солнечный диск, в других случаях корона особенно вытянута в определенных направлениях. В сечении короны можно различить три спектра. Наиболее ярок непрерывный спектр внутреннего кольца короны. В этом спектре нет линий Фраунгофера; природа этой части короны до сих пор остается загадочной. Ее обычно приписывают рассеянию солнечных лучей в атмосфере электронов. Однако провести такое объяснение последовательно, до конца, согласуя со всеми фактами, еще не удалось. Второй спектр тоже непрерывный, но с фраунгоферовыми линиями; его приписывают отраженному свету фотосферы (отражать могут более холодные и удаленные от Солнца частицы пыли). Третий спектр – линейчатый и соответствует свечению атомов. Можно думать, что этот третий спектр возникает вследствие флуоресценции паров под влиянием солнечного света. На это указывают некоторые особенности поляризации этого спектра. Таким образом, Солнце на несколько миллионов километров окружено веществом в разреженном состоянии, частью в виде паров, частью в виде пыли. Эта пыль и пары могут отгоняться от Солнца электрическими силами и световым давлением. Впрочем, во многих отношениях солнечная корона остается еще непонятным явлением. Не исключена, например, возможность, что некоторая часть свечения короны вызывается своеобразным процессом «саморассеяния» лучей в результате пересечения интенсивных световых пучков вблизи Солнца. Современная теория света считается с возможностью такого процесса.

Наш мимолетный и крайне упрощенный очерк оптических явлений на поверхности Солнца мы закончим сведениями об энергии, излучаемой Солнцем. Эта энергия распределена по всему спектру и в невидимой и в видимой областях. На видимую область при этом падает около 40 % всей энергии.

Представим себе, что Земля лишена атмосферы. Основываясь на прямых измерениях энергии солнечных лучей, действительно падающих на земную поверхность, и учитывая влияние атмосферы, можно рассчитать, что при отвесном падении солнечных лучей поверхность Земли без атмосферы получила бы в минуту в среднем 2 калории, или 0,033 калории в секунду на 1 кв. см. На самом деле часть этой энергии поглощается атмосферой.

Зная эту цифру, так называемую солнечную постоянную, легко вычислить общее количество энергии, излучаемое Солнцем в одну секунду. Для этого достаточно сделать естественное предположение, что Солнце излучает одинаково во все стороны, вычислить поверхность шара с радиусом в 150 млн км (расстояние между Солнцем и Землей) и полученную площадь, выраженную в квадратных сантиметрах, помножить на солнечную постоянную, т. е. на 0,033 калории. При выполнении такого расчета приближенно получается 1026 калорий в секунду (т. е. число, первая цифра которого 1, а за нею следует 26 нулей). Это число и само по себе мало наглядно, да и самое понятие калории довольно отвлеченное. Поэтому поучительно будет сделать следующий пересчет.

Современная физика выяснила, что энергия всегда эквивалентна массе. Первым и важнейшим указанием на эту связь послужит факт давления света на тела, впервые открытый и измеренный П. Н. Лебедевым. Тонкими и исключительно трудными опытами Лебедев доказал, что свет, падая на зачерненную пластинку, полностью его поглощающую, давит на пластинку с силою, равной E/tc. Здесь Е – энергия света, поглощаемого за t секунд, а с – скорость света. Если пластинка не черная, а, наоборот, зеркальная, полностью отражающая свет, то давление на нее вдвое больше. Лебедев своими многолетними опытами показал далее, что свет оказывает давление не только на твердые тела, но и на газы. Это обстоятельство приобрело первостепенное значение для современной теории солнечных явлений.

По законам механики следует, что для того, чтобы остановить за время t какой угодно поток (водяной, световой), оказывающий давление, необходимо его «уравновесить» силой F, определяемой из соотношения Ft = mv, где тv – произведение массы т, приносимой потоком, на его скорость v, носящее название количества движения. Итак, сила давления потока F равна изменению количества движения за 1 секунду, т. е. F = mv/t. В случае светового потока v = c (скорость света). Приравняв найденное выражение для силы давления к величине, полученной согласно опытам Лебедева для давления света, найдем mc/t = E/tc, откуда m = E/c2. Полученная формула определяет массу света m, эквивалентную его энергии Е. Это чрезвычайно важное уравнение получено в приведенном выводе в итоге применения законов механики к оптическим измерениям Лебедева и на первый взгляд имеет ограниченное применение – только для света. Впервые Эйнштейн указал, что уравнение

mc2= E

универсально и должно быть справедливым для любых видов энергии. Заключение Эйнштейна получает все большее и широкое экспериментальное подтверждение по мере развития новой физики, в особенности физики атома и атомного ядра, и в настоящее время должно рассматриваться как одно из важнейших положений науки.

Пользуясь написанной формулой, произведем пересчет энергии, излучаемой Солнцем в секунду, на массу. Найденная выше цифра 1026 малых калорий в секунду оказывается равнозначащей примерно 5 млн тонн в секунду. Эта масса, громадная сама по себе, ничтожна для Солнца. Ранее мы нашли, что при отдаче миллиарда тонн в секунду Солнце уменьшилось бы по массе вдвое только за 30 млрд лет, стало быть, при отдаче 5 млн тонн в секунду Солнце может «исхудать» наполовину только за 6000 млрд лет.

Совершенно так же можно пересчитать энергию, получаемую в секунду всей Землей, на массу. Для этого нужно помнить, что одновременно освещается только половина земного шара и, кроме того, что солнечная постоянная относится к отвесным лучам. В результате пересчета получается совсем скромная и легко запоминаемая цифра – около 2 кг в секунду.

Эти пересчеты, делающие несколько осязаемой энергию, излучаемую Солнцем, имеют вместе с тем большой принципиальный смысл. Нас поражает масса Солнца и его практически неисчерпаемая энергия. Как собираются массы, подобные солнечной, и где источник их непрерывно излучаемой энергии? Массы стягиваются в солнечные центры, вероятно, всемирным тяготением. Но, по-видимому, солнечная масса почти предельная; бывают скопления вещества, раз в десять превышающие массу Солнца, но дальнейшего нарастания астрономы не знают. Чем же объясняется такой предел?

При стягивании масс всемирным тяготением возникают колоссальные давления внутри светил и развиваются огромные температуры, которые должны достигать десятков миллионов градусов. Накаленная не только добела, но до рентгеновского света внутренность звезды излучает (по закону Планка) наружу от центра чрезвычайно большие количества лучистой энергии. Этот внутренний свет давит от центра наружу на звездные массы. Таким образом, действию тяготения противодействует световое давление. Разумеется, это противодействие не может превзойти вызывающего его тяготения. Но к световому давлению добавляется центробежная сила, сопровождающая вращение звезды. Когда сумма светового давления и центробежных сил будет равна силе тяготения, дальнейшее нарастание массы светила должно прекратиться. Теоретический расчет показал, что, действительно, массы, порядка солнечной, должны быть во вселенной предельными. Таков частичный ответ астрофизики на вопрос о происхождении солнечной массы.

Но чем возмещается энергия, теряемая Солнцем в виде излучения? В свое время предполагалось, что поток метеоров, падающих на Солнце в количестве (по массе), равном примерно сотой части Земли, за год в состоянии дать нужную компенсацию. Указывалось также, что сжатие поперечника Солнца на 75 м в год должно сопровождаться развитием тепла, вполне равноценным лучистой отдаче. Таким образом, можно бы объяснить существование Солнца в его современном виде по крайней мере в течение 100 млн лет. Этот срок, однако, ничтожен; геология и астрофизика требуют по меньшей мере десятков миллиардов лет для Солнца. Такого длительного бытия Солнца не могут объяснить названные предположения.

Источники излучения Солнца и звезд надо искать по направлениям совсем иным – в запасах энергии, раскрытых новой физикой. Соотношение между энергией и массой, о котором мы только что говорили, указывает в самом общем виде, что любое скопление массы может рассматриваться как эквивалент энергии. Каждый грамм массы – это огромная энергия, величину которой можно вычислить, помножив массу на квадрат скорости света. Грамм массы оказывается равным 20 тыс. млрд калорий. Для получения такой же энергии пришлось бы сжечь 20 тыс. тонн угля.

Мы заговорили об угле как простом примере источника тепловой энергии. Полезно несколько вдуматься в этот пример. Кусок угля – это инертная масса, с механической точки зрения мало отличающаяся от камня. Кусок лежал сотни тысяч лет в инертном состоянии, пока наконец не попал в руки человека, сумевшего превратить скрытую энергию угля посредством горения в кислороде в доступную форму тепла. Это открытие было очень важным событием в истории человечества. Оно обозначало, как мы теперь знаем, освобождение скрытой химической энергии угля. Но современным людям пришлось стать свидетелями другого чрезвычайно важного события – начала овладения атомной энергией. Энергия атомного ядра, освобождаемая в соответствующих процессах, неизмеримо больше энергии сгорания угля. Однако и в том и в другом случае перед нами примеры, в сущности, одного и того же – использования скрытой в веществе энергии в доступной форме.

Какими же путями скрытая энергия, эквивалентная массе, может превращаться в доступные формы световой или тепловой энергии? С точки зрения представлений современной физики можно указать три таких пути. Путь первый – это полное превращение частиц вещества, например протонов, в свет. В предыдущей главе мы говорили о процессе превращения света в вещество, о переходе светового кванта в электрон и позитрон. Однако возможен и обратный процесс. Вероятность его в обычных условиях необычайно мала, но внутри Солнца при колоссальной плотности вещества, огромных давлениях и температурах, измеряемых миллионами градусов, подобные процессы могут происходить много чаще. В итоге этих процессов вся масса исчезающих частиц проявится в энергии света. Во избежание довольно часто встречающейся ошибки при этом важно заметить, что масса не исчезает, не превращается в энергию, как это иногда говорят; масса остается в виде массы получающихся фотонов, но только эквивалентная энергия из формы недоступной становится вполне доступной – световой.

Второй путь перехода скрытой энергии, эквивалентной массе, в энергию доступную состоит в распаде атомных ядер. Давний известный пример этого – распад атома радия. Однако этот естественный процесс происходит чрезвычайно редко, он не может служить источником значительных количеств энергии. Важнейшим шагом вперед в вопросе использования распада атомного ядра как источника энергии было открытие распада изотопа атома урана с атомным весом 235, входящего в количестве 0,7 % в обычный уран, под действием медленных нейтронов. Главное преимущество этого процесса состоит в том, что он имеет цепной характер. В результате распада ядра возникают снова нейтроны, в свою очередь вызывающие распад, и т. д. Получается цепь распадающихся ядер, причем каждое звено этой цепи сопровождается выделением значительной энергии. На основе этого явления построена вся техника освобождения атомной энергии сегодняшнего дня. Для Солнца этот процесс, по-видимому, не имеет значения; внутри Солнца, на основании весьма правдоподобных теоретических представлений, ядер тяжелых атомов урана и других нет.

Имеется, однако, третий путь превращения скрытой энергии, неразрывно связанной с массой, в доступные формы. Этот путь противоположен второму, он состоит не в распаде, а, наоборот, в усложнении, в синтезе атомных ядер. Это давно известно из сопоставления атомных весов. Например, атомный вес водорода равен 1,0080, а атомный вес гелия 4,003. Но гелий должен быть построен из четырех атомов водорода 4 ? 1,0080 = 4,032. Сравнивая эту величину и указанный атомный вес гелия, мы получаем заметную разницу 4,032 – 4,003 = 0,029. Единственное объяснение этой разницы состоит в том, что при образовании ядра гелия из ядер водорода (протонов) исчезает значительная масса, она превращается в излучение или в другие формы энергии. Энергия эта громадна: при превращении 1 г водорода в гелий должна выделяться энергия в 5 млн раз бо?льшая, чем энергия, получаемая при сжатии 1 г водорода в присутствии 8 г кислорода в воду.

Есть довольно веские основания предполагать, что именно этот процесс образования ядер гелия из ядер водорода (протонов) и лежит в основе солнечной энергетики. Роль ускорителя, «катализатора», при этом, вероятно, играет ядро углеродов. Вопрос о действительном процессе, приводящем к превращению связанной энергии атомных ядер в излучение внутри Солнца, не может, однако, еще считаться окончательно решенным: ясно только, что имеется несколько возможностей для этого. Не приходится сомневаться, что получаемый нами на Земле свет Солнца есть результат работы огромной машины, освобождающей в течение многих миллиардов лет внутри Солнца атомную энергию.

В наших земных лабораториях мы не можем воссоздать тех огромных давлений и температур, которые должны быть внутри Солнца. Можно с несомненностью утверждать одно: излучение должно сопровождаться уменьшением солнечной массы. Солнце, так сказать, само себя сжигает, но не в обычном химическом смысле, когда продукты горения остаются бесполезной инертной массой; здесь масса переходит в мировое пространство в виде активной формы энергии – световой радиации; два литра воды, как мы видели, по массе равны свету, получаемому всей Землей от Солнца в секунду. Но мы хорошо знаем, что за счет двух килограммов света живет вся Земля, в то время как два литра воды это незаметная «мелочь».

Солнечные лучи несут с собой солнечную массу. Свет – не бестелесный посланник Солнца, а само Солнце, часть его, долетевшая до нас в совершенной, раскрытой, в энергетическом смысле, форме, в форме света.

Данный текст является ознакомительным фрагментом.