Блочное строительство
Блочное строительство
Уилки Коллинз в романе «Женщина в белом» писал: «У природы столько дел в этом мире, ей приходится создавать такую массу разнообразнейших творений, что по временам она и сама не в силах разобраться во всех тех различных процессах, которыми она постоянно занимается». Попробуем прийти ей на помощь. Биологи предыдущих поколений — зоологи, ботаники, систематики — потратили немало времени на то, чтобы хотя бы вчерне описать и инвентаризировать все добро, все буйство форм и красок, доставшееся им в качестве материала для исследований. Их последователи, углубившись в недра клетки, познали законы наследования признаков и расшифровали код ДНК. Только после этого им удалось начать приближаться к решению вопроса о происхождении поистине фантастического разнообразия живой материи. Лишь в последние десятилетия, обогащенные данными молекулярной биологии и генетики, мы начинаем постепенно понимать, каким образом работает тот поистине неисчерпаемый на комбинации калейдоскоп, который природа неустанно вертит перед нашим удивленным взором.
Житейская практика подсказывает, что в основе разнообразия нередко лежит комбинирование ограниченного числа относительно несложных элементов. Комбинация из шести-семи цифр соединит вас по телефону с нужным абонентом многомиллионного города. Цвет, марка и номер делают автомашину почти уникальной. Для того чтобы написать прекрасное стихотворение, необходимо всего лишь нужным образом скомбинировать тридцать три буквы алфавита и добавить немного знаков препинания.
На последнем примере можно наглядно проиллюстрировать укрупнение подверженных комбинированию блоков при переходе с одного уровня сложности на другой, более высокий. Буквы слагаются в слоги, слоги — в слова. Из слов составляются фразы. Количество букв в алфавите любой страны совсем невелико, все значимые слова можно поместить в словарь, количество же фраз, которые из этих слов можно составить, явно не поддается никакому учету. Рассказы, повести и романы, составленные из отдельных предложений, где и как проявляется способность к комбинированию в биологии?
Практически безграничное множество органических молекул определяется способностью атома углерода и немногих, чрезвычайно распространенных в клетках элементов — водорода, азота, кислорода, серы и фосфора — соединяться в различных комбинациях. Некоторые из таких комбинаций играют ключевую роль «строительных кирпичиков» в клетках. Всего лишь двадцать аминокислот из полутора сотен известных образуют бесчисленное множество белков. Различные моносахара — глюкоза, галактоза, манноза, ксилоза — соединяясь вместе, образуют самые разнообразные полисахариды: крахмал, гликоген, целлюлозу, хитин, пектин и множество им подобных органических молекул. Всего четырех нуклеотидов («букв») оказывается достаточно, чтобы с помощью их сочетаний зашифровать в ДНК всю информацию об устройстве и функционировании любого организма.
Если уподобить аминокислоты буквам алфавита, белки будут похожи на очень длинные слова. Так же, как и в словах, в белках удается обнаружить различные части. Нечто вроде приставок, корней и суффиксов. Биологи называют такие части белков доменами. Обычно они выполняют разные функции. Одни «заякоривают» белки в мембранах, другие домены реагируют с веществами-субстратами, третьи могут присоединяться к ДНК. Комбинируя различные домены, можно получать белки с разными свойствами. Рассматривая пространственную организацию белков, специалисты выделяют в них отдельные, похожие по укладке первичной аминокислотной последовательности части — так называемые альфа-спирали и бета-тяжи. В середине семидесятых годов XX века была высказана гипотеза, что эти части могут быть ориентированы различным образом и по-разному соединены друг с другом. Таким образом, и тут мы сталкиваемся со случаем, когда из небольшого числа структурных элементов получается большое количество способов их соединения и взаимного расположения.
Разумеется, клетка не в состоянии тасован, любые части белков по своему усмотрению — ведь их структура записана в генах, однако некое мозаичное строение многих белков явно проглядывает в их структуре. Поэтому не правы те критики теории эволюции, которые говорят, что создание сложного работающего белка методом случайного подбора аминокислот практически невозможно. Это, дескать, все равно, что вслепую давя на клавиатуру пишущей машинки или компьютера, получить кусок значимого текста. Природа действует иначе. Она комбинирует уже созданные ранее заготовки, блоки. Заметьте — случайно составляя слоги, уже можно получим, довольно много осмысленных слов вроде «живо», «наше», «шило». Из них уже совсем немудрено составить фразу, которая будет, иметь какой-то смысл. Например: «Наше шило живо». Отдает букварем с его Машей и рамой, но это уже фраза! Так же и с белками.
Поднимемся теперь на чуть более высокий уровень, на котором сами белковые цепи представляют собой отдельные строительные блоки. Многие ферменты состоят из нескольких таких цепей; они могут быть одинаковыми, разными, и даже выполнять разные функции. Не правда ли, и здесь чувствуется простор для комбинирования? Пример для иллюстрации — фермент лактатдегидрогеназа (он отщепляет водород), представляющий собой тетрамер. Каждая из четырех цепей может быть представлена двумя формами — А или В. В клетках встречаются все пять возможных форм: 4А, 3А1В, 2А2В, 1А3В и 4В. Другой пример — гемоглобин, также являющийся тетрамером и состоящий из двух цепей — альфа и бега. К тому же, в человеческом организме может синтезироваться сразу несколько форм каждой такой цепи. Соответственно, существуют, по меньшей мере, пять различных гемоглобинов, хотя теоретически их должно быть гораздо больше. Случаев подобного рода нетрудно набрать из любого учебника биохимии и молекулярной биологии.
Блочному строению белков соответствует мозаичное строение генов. Четверть века тому назад подобную мысль посчитали бы крамольной или безумной. Теперь же представление о прерывистом устройстве генов кажется не только привычным, но и проникающим уже порой на страницы современных школьных учебников.
В пределах многих, если не всех генов многоклеточных организмов участки, несущие информацию о белках или их частях (экзоны), чередуются с некодирующими участками (нитронами). В процессе синтеза белков с участков ДНК снимаются копии и участки, соответствующие интронам, вырезаются. Вместе с нитронами могут вырезаться и некоторые экзоны. Таким образом, с одной и той же последовательности ДНК могут быть получены разные комбинации, соответствующие несколько отличающимся белкам. Так, закрывая в длинной и невнятной фразе отдельные слова, можно получить короткие и ясные выражения. Хороший пример — прерывистый ген, кодирующий одновременно гормон кальцитонин в паращитовидной железе и нейропептид в гипофизе.
В конце семидесятых годов XX века было выдвинуто предположение, что не несущие информацию о белках интроны играли важную роль в комбинировании экзонов у древних одноклеточных и даже до клеточных организмов. Новый белок получался за счет разных комбинаций уже существовавших кусочков, закодированных в экзонах. Не удивительно поэтому, что теперь многие экзоны в ДНК соответствуют в белках их определенным участкам — доменам. На заре появления первых сложных клеток новые белки возникали, вероятно, в результате соединения и закрепления в таком положении нескольких «отрезков» ДНК. Эволюция самих генов может быть представлена не только и не столько появлением новых генов, сколько удвоением и перераспределением уже имеющихся.
Любопытно, что у современных позвоночных животных этот процесс создания белкового разнообразия путем комбинирования отдельных кусочков ДНК повторяется вновь и вновь при развитии иммунной системы. По приблизительным оценкам в организме каждого человека синтезируется до миллиона различных форм белков-иммуноглобулинов. Именно это разнообразие и обеспечивает удивительную способность организма противостоять инфекциям, распознан практически любые чужеродные белки и клетки. Столь огромное, подавляющее воображение разнообразие возникает за счет способности генов, кодирующих иммуноглобулины, появляться в процессе созревания лимфоцитов из большого, но все же ограниченного числа небольших, участков ДНК. В самом общем виде, не вдаваясь в тонкости, процесс образования генов иммуноглобулинов можно уподобить сдаче карт во время игры в покер или в подкидного дурачка. Количество карт в колоде ограничено, но число их комбинаций, которые оказываются на руках при сдаче, очень велико.
О том, как природа «играет в карты» в процессе мейоза, тасуя хромосомы родителей и создавая, в конечном счете, уникальные генетические сочетания у потомков, уже было рассказано в самом начале книги. На уровне целого хромосомного набора также может происходить комбинирование отдельных блоков. Под таким углом зрения можно рассматривать делении (утраты части хромосом), инсерции (вставки) и инверсии.
Хорошо известно, что гены способны «включаться» и «выключаться», то есть служить сиюминутным источником информации для синтеза белков, или до поры до времени такую информацию клетке не предоставлять. Поскольку у человека, по современным оценкам, должно быть около 30 тысяч генов, можете представить себе, какой практически бесконечный простор для творчества возникает из-за возможности их включать и выключать в разных комбинациях. Не лишне упомянуть при этом, что аминокислотные последовательности белков человека отличается от таковых гориллы лишь на несколько процентов. Иначе говоря, они практически совпадают. А какая значительная между нами разница! Она возникает не за счет новых «человеческих» белков, а за счет иного умелого комбинирования уже существующих. Представьте такую ситуацию: вы слышите совершенно различную фортепианную музыку. Скажем, первый концерт Рахманинова и джазовую мелодию в стиле регтайм. Бросаетесь к двум инструментам с надеждой обнаружить причины различий и находите одни и те же черные и белые клавиши! Такая же ситуация с белками и генами. Искусство эволюции состоит в умении их комбинировать.