Глава 3 СИНЭКОЛОГИЯ
Синэкология — часть экологии, изучающая экологические системы. Общепринятого понятия системы до сих пор не существует. Под системой обычно понимают целостное образование, состоящее из взаимосвязанных компонентов (элементов). Любая система состоит из частей (подсистем) и является составным компонентом системного образования более высокого иерархического уровня (надсистемы). Например, биогеоценоз как система состоит из подсистем — биоценоза, популяций растений и животных — и входит в состав биосферы — глобальной системы высокого иерархического уровня. Системы обладают эмерджентными (новыми) свойствами. Каждая система качественно отличается от слагающих ее подсистем и от надсистемы, в которую она входит. Для иллюстрации принципа эмерджентности Ю. Одум приводит два примера. Молекула воды как система состоит из непохожих на нее подсистем — атомов водорода и кислорода. Коралловый риф как система резко отличается от составляющих его подсистем: водорослей и кишечнополостных животных.
3.1. БИОГЕОЦЕНОЗЫ КАК ЭЛЕМЕНТАРНЫЕ СТРУКТУРНЫЕ ЕДИНИЦЫ БИОСФЕРЫ
Термин «биогеоценоз» (био — жизнь, гео — земля, ценоз — сообщество) был предложен В. Н. Сукачевым в 1940 г. Им обозначают наземные и водные природные комплексы — леса и степи, озера и реки и т. д. Наряду с термином «биогеоценоз» существует термин «экологическая система» (экосистема), предложенный А. Тенсли в 1935 г. Термины «биогеоценоз» и «экосистема» отражают близкие понятия. Некоторые авторы их отождествляют, что, однако, неправильно.
Термин «экосистема» истолковывают неоднозначно. Так, Л. О. Карпачевский (1983) этим термином обозначал разнообразные природные объекты, представляющие собой те или иные формы взаимосвязи живого организма со средой своего обитания. Экологическими он называет такие биологические системы, как, например, дерево с растущими на нем лишайниками, клещ, впившийся в кожу животного, и другие подобные сожительства организмов. Микроб или паразит (микроорганизм) во взаимосвязи с растением или животным (макроорганизмом) — это экосистема биогенная, т. е. порожденная живыми организмами. Наряду с этим существуют биокосные системы, в которых средой обитания для организмов служит неживой субстрат органического или неорганического происхождения. Примеры таких экологических систем: личинки жука-могилыцика на теле умершего животного, микроорганизмы в капле воды и т. д.
Простые экологические системы объединяются в более сложные. Так, система бактерии — личинки овода — может входить в систему более высокого уровня — надсистему личинки овода — корова, а корова, в свою очередь, — составной компонент системного образования еще более высокого ранга — луга (пастбища). Биокосные системы могут быть самыми разнообразными. Они отличаются по составу биоты, величине (объему) и т. д. Биокосные системы — лесной колок, озеро, тайга (таежный ландшафт), море. Биосфера, представляющая собой совокупность всех организмов, населяющих нашу планету, со средой своего обитания, — это тоже биокосная система.
Большинство современных авторов под экологической системой понимают сообщество взаимосвязанных организмов разных видов (биоценоз) со средой своего обитания (неживой, косной природой). Организмы и окружающая их среда объединены в одно функциональное целое из-за взаимозависимости и причинно-следственных связей между живой и неживой природой. Размер экологической системы трудно определить в физических мерах изменения (длины, площади, объема). Экосистему можно оценить лишь мерой, учитывающей процессы саморегуляции и самовосстановления составляющих ее средообразующих компонентов.
В современном понимании биогеоценоз (БГЦ) — эволюционно сложившаяся, относительно пространственно ограниченная, внутренне однородная природная система функционально взаимосвязанных живых организмов и окружающей их косной среды (рис. 12). БГЦ характеризуется определенным энергетическим состоянием, типом и скоростью обмена веществом и информацией (Реймерс). Биогеоценоз — это элементарная биохорологическая единица биосферы — глобальной экологической системы. Совокупности однотипных БГЦ образуют ландшафты (регионы биосферы). Так, таежные БГЦ формируют таежный ландшафт, степные БГЦ — степной ландшафт и т. д.
Биогеоценоз состоит из четырех категорий взаимодействующих слагаемых: продуцентов, консументов, редуцентов и неживых тел.
Компоненты неживой (косной) природы — атмосфера, вода, материнская порода.
Продуценты (производители) — это организмы, осуществляю-
Рис. 12. Функциональная структура биогеоценоза
щие процесс новообразования органических веществ из простых неорганических соединений. К ним относят фотосинтетики (высшие и низшие зеленые растения) и хемосинтетики (серобактерии, нитрофицирующие бактерии и др.). Основная масса органических веществ образуется в процессе фотосинтеза. Роль хемосинтеза в создании органического вещества невелика.
Консументы (потребители) — организмы, потребляющие готовое органическое вещество фотосинтетического и хемосингетичес-Кого происхождения и переводящие его в другие формы. К ним относятся животные (и паразитарные растения).
Редуценты (разрушители, разлагатели) — организмы, разлагающие сложные органические вещества растительного и животного Происхождения и переводящие их в простые неорганические соединения. Минерализацию органических веществ осуществляют главным образом грибы и микроорганизмы.
Среди компонентов наземных биогеоценозов особую роль отводят почве. Почва, по В. А. Ковде, — продукт биогеоценоза и главный его компонент. Ее рассматривают как биокосное природное тело, сформировавшееся в процессе взаимодействия живой и неживой природы. Характерное свойство почвы — плодородие, которое во многом определяет успешное развитие растениеводства и связанного с ним животноводства.
Учение о почвах создано в прошлом веке В. В. Докучаевым. Он доказал, что почва представляет собой одно из самостоятельных природных тел, сформировавшихся в процессе эволюции природы. В. В. Докучаев назвал почву зеркалом ландшафта, имея в виду, что структура, физико-химический состав и другие свойства почвы отражают процесс формирования и развития ландшафта как природного комплекса. Биогеохимия почвенного покрова зависит от химического состава материнской породы, особенностей климата, растительности, животных, микроорганизмов, особенно азотфиксаторов, нитрофицирующих и денитрифицирующих бактерий. В то же время почва — аккумулятор веществ и энергии. Она аккумулирует продукты метаболизма растений и животных. В ходе физико-химического выветривания материнской породы почва пополняется минеральными соединениями. Химический состав ее изменяется за счет вноса в биогеоценоз и выноса из него микро- и макроэлементов (водой, ветром, организмами).
Важнейшая составная часть почвы — гумус — плодородный слой, максимально заселенный живыми существами. Благодаря своей коллоидальной природе гумус увеличивает поглотительную способность почв. В нем содержатся легкодоступные для растений минеральные вещества, кислород и диоксид углерода. Входящие в его состав гуминовые вещества цементируют частицы почвы в структурные агрегаты, что существенно влияет на ее физические и химические свойства. Почвы с выраженной структурой рыхлее, плодороднее.
Большое внимание уделяют изучению системной организации почвы — естественно-природного тела, играющего важную роль в функционировании экосистем, в том числе сельскохозяйственных. От атомарного состава молекул во многом зависят физико-химические свойства элементарных почвенных частиц, определяющих принадлежность почв к той или иной категории, например к глинам, суглинкам, пескам. В зависимости от размера почвенных частиц, их преобладания в грунте почвы подразделяют по гранулометрическому составу.
Более высокий уровень организации почв — агрегатный. Первичные частицы — элементы почв — образуют агрегаты. Форма, величина и уровень организации агрегатов различны. Некоторые агрегаты — результат объединения элементарных почвенных частиц. Агрегаты низшего порядка, объединяясь, формируют образования более высокого уровня. Возникают агрегаты второго, третьего, четвертого и т. д. порядков. Агрегатность почвы во многом определяет ее функциональные свойства, связанные с содержанием в ней капиллярной воды и т. п.
Еще более высокий уровень организации почв — морфонный. Морфонами называют участки почвенной массы, однородные по своим свойствам: трещины в почве, поверхность, перерытая животными, и т. д.
Следующий уровень организации почв — горизонтный. Горизонты состоят из морфонов. Горизонты — это типичные почвен-
ные образования, различающиеся по цвету, плотности и другим признакам. Среди них главными считают гумусовые горизонты, образующиеся в поверхностных слоях почвы. В гумусовых горизонтах накапливается гумус, они окрашены в серые и серовато-бу-' рые тона. Под гумусовыми могут формироваться элювиальные горизонты. Горизонты определяют особенности и глубину распространения корневой системы растений, распределения почвенной влаги.
Более высокий, чем горизонтный, уровень организации почвы — почвенный профиль — вертикальная совокупность горизонтов. Почвенные профили служат основой классификации почв.
Совокупность профилей — объем — еще один уровень организации почвы. Объемы бывают различными. В одних случаях они представляют собой совокупность одинаковых профилей (педон, или почвенный индивид), в других — разных (тессера). Образование, состоящее из педонов и тессер, называется ареалом. Совокупность ареалов составляет почвенный покров — высшую форму организации почв. Земледельцев в первую очередь интересуют закономерности почвенного покрова территории, на которой ведется сельское хозяйство.
Почву рассматривают как кладовую ресурсов, необходимых для живых компонентов БГЦ. Разнообразные минеральные соединения и сложные органические вещества, содержащиеся в почве, используются растениями, а затем их потребителями — животными. В случае резких климатических или иных колебаний почва как депо ресурсов служит спасительным буфером между живой природой и окружающей ее аномально измененной средой. Как системное образование почва выполняет буферно-депонирующую функцию аналогично биологическим системам: семя — у покрытосемянных растений, жировое тело — у насекомых, курдюк — у курдючных овец, горб — у верблюдов (Мордкович).
Живые, неживые и биокосные компоненты биогеоценоза функционально взаимосвязаны между собой и образуют единую целостную систему. Целостность системы поддерживают процессы обмена веществ в форме биотического круговорота.
Начальный этап биотического круговорота — фотосинтез и хемосинтез. Фотосинтез осуществляет хлорофилл зеленых растений с помощью энергии Солнца. Потребляя солнечную энергию, растительные организмы синтезируют органические вещества своих тел из диоксида углерода, минеральных солей и воды. Хемосинтезирующие бактерии образуют органические соединения, используя энергию химических реакций.
Органическое вещество фотосинтетического и хемосинтети-ческого происхождения поступает в пищевые (трофические) цепи. С геохимической точки зрения пищевая цепь — это природный инструмент превращения сложных органических веществ растительного и животного происхождения в простые неорганические,
т. е. их минерализации. Минерализация происходит в самих растениях, которые при дыхании окисляют органические вещества до диоксида углерода и воды.
Однако основная масса органических веществ минерализуется животными и особенно микроорганизмами. Микроорганизмы — микробы и грибы — играют особую роль в превращении сложных органических веществ в простые неорганические соединения. Поэтому Л. Пастер назвал их «великими могильщиками». Разрушение органических веществ завершается образованием диоксида углерода, воды и минеральных солей, которые служат пищей для растений, и биотический круговорот повторяется. Круговорот азота показан на рисунке 13.
Электрохимическое и фотохимическое ~ связывание
ДенитрификацияРис. 13. Круговорот азота (по П. Дювиньо и М. Тангу) "
~(солнчф~
Основная масса азота сосредоточена в свободном состоянии в атмосфере. Содержание его в воздухе 78,09 % (N2 по объему), в литосфере 1,9 ? 10“^° % (по массе). Превращение атмосферного азота в азотные соединения, усваиваемые организмами, осуществляют свободноживущие почвенные микроорганизмы и водоросли. В биологической фиксации молекулярного азота важную роль играют клубеньковые бактерии в симбиозе с бобовыми растениями. Свободноживущие азотфиксирующие бактерии могут связать 25— 40 кг молекулярного азота на 1 га в год. Клубеньковые бактерии, живущие на клубеньках бобовых культур, усваивают еще больше азота — до 250 кг на 1 га в год.
Накопленные в почвах азотные соединения потребляют растения, затем травоядные и хищники, паразиты и сверхпаразиты, другие гетеротрофные организмы, составляющие трофическую цепь. Азот накапливается в растительных и животных организмах, в продуктах их метаболизма в форме белка, аминокислот, мочевины и других азотсодержащих веществ. В биосфере содержится 150 млрд т азота, связанного в органических соединениях почв (1,5 ? 1011 т), в биомассе растений (1,1 • 109 т) и животных (6,1 • 107т).
При минерализации фито- и зоомассы образуется аммиак (аммонификация), который поглощается почвой в виде катионов аммония (NH4) или окисляется в ней. При окислении аммония, поглощенного почвой, и аммиачных солей образуются нитраты и нитриты (нитрификация). Аммонификация и нитрификация — составные элементы биотического и геологического круговоротов азота. Одна часть продуктов нитрификации усваивается растениями, другая превращается в молекулярный азот (динитрификация). Азот, усвоенный растениями, вовлекается в биотический цикл. Молекулярный азот, поступающий в атмосферу, участвует в геологическом круговороте.
С развитием земледелия, растениеводства и животноводства биотический круговорот азота существенно преобразился. На круговорот азота оказывало влияние широко распространенное ранее внесение местных органических удобрений (навоза). Но оно было незначительным. С помощью навоза возмещали лишь потери азота при выносе его из почв с урожаем. Затем стали использовать минеральные азотные удобрения. Ежегодно в мире производят и вносят в почвы в форме минеральных удобрений 30—35 млн т азота. В некоторых странах дозы азота, вносимого с удобрениями, достигли 150 и даже 250 кг/га.
Фосфор, как и азот, относят к облигатным биофилам. Биотические круговороты этих элементов в некоторых случаях протекают совместно. Однако биогеохимия фосфора резко отличается от биогеохимии азота. В геохимическом цикле азота обязательно Присутствует газовая форма этого элемента. Фосфор же в форме газа (например, РН3) в биотическом и геологическом круговоротах, по существу, не представлен.
Среднее содержание фосфора в земной коре составляет 0,09 %. Основные его запасы сосредоточены в горной породе, гумусовом горизонте почв, донных осадках морей и океанов. К числу наиболее распространенных фосфатов, образующих залежи фосфора, относят апатиты. В почвах, и особенно гумусовой оболочке суши, аккумулированы соединения фосфора.
Под влиянием биотического круговорота веществ концентрация фосфора в почве заметно выше (в среднем 0,1—0,3 %), чем в земной коре. Гумусовые горизонты ненарушенных почв богаты фосфором, в лесной подстилке иногда содержится до 100 кг/га этого элемента. Большое количество фосфора (106 — 107т) удерживается в веществе биосферы. Содержание данного элемента в фитомассе природных (естественных) луговых степей достигает 30 кг/га. Для диких травоядных млекопитающих такой уровень фосфора в кормовых растениях вполне достаточен.
Круговорот фосфора представлен на рисунке 14.
Цивилизация заметно повлияла на биотический и геологический круговороты фосфора. В тех местах, где земледельцы для удобрения почв широко использовали навоз, круговорот фосфора изменялся незначительно. Там, где навоз применяли недостаточно или совсем не использовали, возврат фосфора в биогеохимический цикл сократился или даже прекратился.
При высоких урожаях из почв выносится значительное количество фосфора. Притока в почвы соединений фосфора в виде атмосферных выпадов или биогенной фиксации из воздуха не происходит. Поэтому даже лучшие почвы без регулярного внесения фосфорных удобрений через 40—50 лет использования под посевы резко истощаются, концентрация фосфора в почвенном покрове сильно снижается.
В результате водной эрозии с поверхностным стоком с почвы смывается большое количество гумуса и, следовательно, содержащегося в нем фосфора. Почвенный слой, уносимый при эрозии, в 3—5 раз богаче органическим веществом, фосфором и другими биофилами. В настоящее время около 3—4 млн т фосфатов смывается с континентов и безвозвратно захороняется в глубинах Мирового океана. Перемещение фосфора из биотического круговорота в геологический осложняет фосфорную проблему. В результате фосфорного голодания снижается урожайность сельскохозяйственных культур и кормовых трав, ухудшается качество кормов, нарушается фосфорное питание домашних животных.
Применение минеральных фосфорных удобрений, как и азотных, из года в год растет. Круговорот фосфора изменяется, особенно при избыточном внесении фосфорных удобрений в почвы и загрязнении ими водоемов.
Внутрирегиональная и межгосударственная миграции фосфора приводят к тому, что в одних местах концентрация фосфора возрастает (зафосфачивание), в других, наоборот, снижается (дефосфоти-зация). Тела животных (и человека), их экскрементй содержат
Рис. 14. Круговорот фосфора (по П. Дювиньо и М. Тангу)
очень много фосфора, поэтому вокруг населенных пунктов, особенно вблизи животноводческих ферм и комплексов, в местах захоронения трупов людей и животных (кладбища, скотомогильники) концентрация фосфора резко повышается. Зафосфачивание почв отмечают на участках, где расположены парники и теплицы, сады, огороды, бахчи, обильно удобряемые навозом. На полях, лугах и пастбищах, где отчуждение фосфора и других биофилов с помощью удобрений не возмещается, развивается дефосфотизация.
Калию свойственна такая же биофильность, как азоту и фосфору. Круговороты фосфора и калия во многом похожи. Средняя концентрация калия в земной коре составляет 2,6 %. Содержание калия в почвах различно. Богаты им почвы с мощным гумусовым горизонтом. При минерализации органических веществ растительного и животного происхождения почвенный гумус обогащается этим элементом. Очень много калия в калийных месторождениях.
С развитием земледелия биотический круговорот калия, как и фосфора, стал иным. Но особенно резкие изменения круговорота калия произошли в результате расширенного производства калийных удобрений и разнообразных химических продуктов, содержащих этот элемент (поташ, калия сульфат и др.).
Круговороты макро- и микроэлементов протекают более или менее однотипно.
Принцип системной организации вполне применим и к живой природе. Растения и животных, в том числе сельскохозяйственных, изучают на молекулярном, клеточном, тканевом, органном, организменном, популяционном, биоценозном и биогеоценозном (экосистемном) уровнях. Молекулярный уровень организации живого изучает молекулярная биология (и патология), клеточный — цитология, тканевый — гистология, органный — анатомия (и патанатомия), физиология (и патофизиология), организмен-ный — организменная биология (и патология), популяционный — популяционная экология, биоценозный — биоценология, биогео-ценозный — биогеоценология, биосферный — глобальная экология.
Отличительная особенность систем — их иерархичность. Системы низшего уровня (подсистемы) соподчинены системам высшего ранга (подсистемам). Иерархичность систем имеет важное биогеоценологическое значение — она способствует упорядоченности и целостности биогеоценозов как элементарных структурных единиц биосферы.
Биогеоценозы земного шара весьма разнообразны. Они различаются по особенностям флоры и фауны, материнской породы, почв, вод, пищевых цепей, биотического круговорота, климатических условий и т. д.
Многообразие биогеоценозов вызвало необходимость их систематизации, классификации. Всеобъемлющей классификации БГЦ до сих пор нет. Несколько классификаций БГЦ разработали экологи и биогеоценологи. Систематизация биогеоценозов облегчает решение научных и прикладных проблем экологии и биогеоцено-логии.
В ряде классификаций учитывают возраст БГЦ. Процесс образования биогеоценозов на Земле идет непрерывно. Они формируются на осыпях, дюнах, лавах и т. д. В других местах в течение длительной эволюции образовались устойчивые БГЦ с флорой и фауной, приспособленными друг к другу и условиям своего существования. Это позволило разделить биогеоценозы на молодые (формирующиеся) и зрелые (полностью сформировавшиеся), климак-сные.
В зависимости от расположения биогеоценозов — на суше или в водоеме — различают биогеоценозы наземные (сухопутные) и водные (речные, озерные, морские и др.).
Структура и функция биогеоценоза во многом определяются его приуроченностью к географической зоне. Различают биогеоценозы арктические и антарктические, тундровые, таежные, степные, полупустынные и пустынные, субтропических и тропических лесов.
Изменения биосферы и ее элементарных единиц биогеоценозов резко ускорились с антропогена. Человечество превратилось в мощную силу, изменяющую природу Земли, ее биогеоценозы. Биогеоценозы бывают природные, естественные (натурбиогеоценозы) и антропогенные (культурные, искусственные). Примером натурбиоге-оценоза служит лес, не тронутый человеческой деятельностью. Природных комплексов, не измененных человеком, на Земле осталось очень мало. Антропогенными называют биогеоценозы, преобразованные деятельностью человека или созданные им. Примеры таких БГЦ: лесопосадки, поля и культурные пастбища, животноводческие фермы и комплексы, аквариумы, пруды и водохранилища. К антропогенным биогеоценозам относят и человеческие поселения: хутора, деревни, села и другие населенные пункты. Их называют антропогеоценозами.
По происхождению различают коренные и производные биогеоценозы. Коренные биогеоценозы сформировались в ходе естественного развития природного комплекса. Отличительная черта большинства коренных биогеоценозов — их относительная устойчивость, выработанная в процессе длительной эволюции. В них сложились флора и фауна, оптимально приспособленные друг к другу и условиям своего существования. Растения, животные и микроорганизмы, населяющие биогеоценоз, оказывают друг на Друга благоприятное влияние. В таких коренных БГЦ образовалось устойчивое экологическое равновесие, препятствующее возникновению массовых болезней растений (эпифитотий) и животных (эпизоотий).
Производные биогеоценозы возникают в тех местах, где разрушаются (землетрясения, горные разработки и др.) коренные биогеоценозы. К производным относят агробиогеоценозы, создаваемые человеком в аграрных ландшафтах. Устойчивость производных БГЦ t Обычно очень низкая.
i}1 По наличию и содержанию живых и неживых компонентов биогеоценозы подразделяют на полночленные и неполночленные.
полночленных биогеоценозах присутствуют растения, животные ?И микроорганизмы, атмосфера, гидросфера, педосфера. Полночленные биогеоценозы аграрного ландшафта — лесопосадки, поля, сады, культурные пастбища. Биогеоценозы с обедненной структурой, с отсутствием одного или двух компонентов, назвали неполночленными. К ним можно отнести биогеоценозы прибрежно-водные и торфяно-болотные, где нет почвы: пещеры, птичьи базары на морских островах. Неполночленными антропогенными биогеоценозами считают животноводческие фермы и комплексы, так как в них отсутствуют почвы и растительность.
В зависимости от наличия или отсутствия автотрофов — производителей органического вещества — экосистему называют автотрофной или гетеротрофной (Одум). Примеры автотрофных биогеоценозов (экосистем) — лес, луг, поле; гетеротрофных — город, животноводческая ферма или комплекс. Изучение характера природных процессов, связанных с особенностями структуры и функции БГЦ, необходимо для разработки методов их охраны. Это имеет важное значение в сельском хозяйстве при регуляции и оптимизации аграрных ландшафтов для повышения эффективности сельскохозяйственного производства.
3.2. ПРИРОДНЫЕ БИОГЕОЦЕНОЗЫ
Каждый, кто изучает сельскохозяйственную экологию, должен знать, как устроены природные биогеоценозы. Природные БГЦ — продукт «творческой» деятельности самой природы, поэтому их считают эталонными. Без понимания особенностей организации природных БГЦ невозможно проводить оценку сельскохозяйственных экосистем.
Одна из важнейших характеристик биогеоценозов — их структура. Структурность БГЦ выражается в естественном функционально-морфологическом делении системы на части, блоки (подсистемы), тесно связанные между собой. Подсистемы играют роль «кирпичиков», «биогеоценотических элементов», формирующих биогеоценоз как единое целое. К биогеоценотическим блокам относят элементы неживой и живой природы: воздух, воду, материнскую породу, почву, растительность, животный мир.
Блоки (элементы) природных биогеоценозов подчиняются закону упорядоченности заполнения пространства и пространственно-временной определенности. Суть закона в том, что заполнение пространства внутри БГЦ в результате взаимодействия между его подсистемами упорядочено так, что позволяет реализоваться гомеостатическим свойствам экосистемы. Упорядоченность связей между телами (элементами) выражается в разных формах. Н. В. Дылис различает три аспекта организации БГЦ: структурно-физический, характеризующий пространственную группировку и размещение масс живых и неживых тел; функциональный, отражающий их взаимоотношения и деятельность; временной, фиксирующий динамику их сложения и характер работы. Все аспекты органически связаны между собой и проявляются как разные стороны функционирования биогеоценоза как биокосной системы.
В формировании структурности БГЦ важную роль играет растительность. Растения разнообразны по видовому составу, адаптивным возможностям, жизненной стратегии и т. д.
По степени выживания в биогеоценозах, характеру жизненной стратегии растения подразделяют на три основные группы: R-стра-тегов (эксплерентов); К-стратегов (виолентов); S-стратегов (пати-ентов).
Эксплерентов образно называют «бродягами», «шакалами». Экс-плерент не накапливает в организме значительных запасов органического вещества, он почти не обладает конкурентной способностью. Для большинства эксплерентов характерны выраженная пластичность и высокая плодовитость. Они плодоносят даже в угнетенном состоянии. Эксплеренты обычно растут на новых, нарушенных территориях, где мало или нет другой растительности и, следовательно, отсутствует конкуренция.
Растения К-стратеги называют виолентами (образно — «силовиками», «львами»). Они обладают выраженной конкурентной способностью, как правило, имеют мощный габитус и хорошо развитую корневую систему.
Виоленты — это чаще всего виды-эдификаторы. Их реализованная экологическая ниша приближается к фундаментальной экологической нише.
Растения S-стратеги, или патиенты (образно — «верблюды», «терпеливцы»), хорошо переносят неблагоприятные условия среды за счет специальных физиолого-биохимических механизмов переживания стресса. У патиентов экологическая ниша по объему приближается к фундаментальной. У некоторых видов-патиентов хорошо выражена дифференциация ниш.
Кроме типичных эксплерентов, виолентов и патиентов имеются промежуточные формы типов растений.
В процессе эволюции формируются фитоценозы — более или менее устойчивые исторически сложившиеся сообщества растений. Среди них выделяют виды-доминанты, занимающие основное положение в фитоценозе и оказывающие преобладающее влияние на ход биогеоценотических процессов. В лесных БГЦ доминантами служат деревья, в степных — травы. Доминанты обычно выполняют роль эдификаторов — видов растений, определяющих особенности среды не только в фитоценозе, но и в биоценозе в целом. Растения-эдификаторы влияют на физические и иные свойства БГЦ. Так, микроклиматы лесного и степного биогеоценозов, расположенных в одной и той же климатической зоне, в силу присущих им фитоце-нотических особенностей отличаются друг от друга в любое время года и суток.
Вертикальная и горизонтальная структуры фитоценоза во многом зависят от слагающих его видов растений. В лесных фитоценозах обычно четко выражена вертикальная (ярусная) структура. Ярусность фитоценоза характеризуется расчлененностью всей толщи растительного покрова на горизонты, слои. Так, в лесном фитоценозе различают ярусы древесный, кустарниковый, травяной, тра-вяно-кустарничковый и мохово-лишайниковый. К каждому слою (ярусу) или его части приурочены функционально разные органы растений (наземные — листья, стебли; подземные — корни, клубни и др.). Растения каждого яруса выполняют характерные, свойственные им биогеоценотические функции. В каждом ярусе создаются более или менее своеобразные физико-химические и биотические условия, формируется определенный мир организмов, связанных с растениями. На рисунке 15 показана приуроченность различных видов гетеротрофов к разным органам дуба, что ярко демонстрирует ярусную структуру леса.
Наряду с вертикальным расслоением растительности наблюдается ее горизонтальная неоднородность, мозаичность. Заметны вариации в густоте стояния растений, размещении отдельных видов (рассеянно, группами и т. д.). Горизонтальная мозаичность растительного покрова сказывается на локальных свойствах атмосферы (освещенность, влажность), почвы (влажность, промерзание) ит. д. Части горизонтального расчленения БГЦ, отличающиеся друг от друга по составу, структуре и свойствам компонентов, названы Н. В. Дылисом парацеллами.
С растениями, формирующими автотрофный блок БГЦ, тесно связаны гетеротрофы — организмы, питающиеся растительной массой. Совокупность взаимосвязанных автотрофов и гетеротрофов образует консорцию — биологическую систему, где центральным членом, ядром или консортом-детерминантом являются растения. Отличительная черта консорции — не только трофически-энергетическая и топическая связь консортов с центральным членом (ядром), но и общность их эволюционного процесса, взаимного приспособления друг к другу в течение длительной коадаптации.
Животный мир биогеоценозов разнообразен. Он состоит из простейших, губок, кишечнополостных, червей, членистоногих, птиц, млекопитающих и т. д. Животные заселяют наземную часть сухопутных БГЦ, почву, водные экосистемы.
Видовой состав животных разных биогеоценозов (таежных, степных и т. д.) неодинаков. Несмотря на это, животные выполняют более или менее однотипные биогеоценотические функции, способствующие работе БГЦ как целостной системы. Поедая растительную массу, животные превращают ее в органические вещества своих тел (белки, жиры, мочевину и т. д.); выделяют в среду продукты метаболизма (диоксид углерода и др.) и экскременты (фекалии, мочу). В процессе дробления и химической переработки пищевых материалов они ускоряют минерализацию фито- и зоо-
Рис. 15. Потребители дуба (по П. Дювиньо и М. Тангу). Гетеротрофы сгруппированы по органам, которыми они питаются (в скобках указана кратность увеличения).
Листья: 1 — дубовый долгоносик-прыгун (х 3); 2— дубовый трубковерт (х 5); 3 — майский хрущ (х 0,5); 4 — златогузка (х 0,5); 5 — кольчатый шелкопряд (х 0,5); 6 — пяденица-обдирало (х 0,5); ' — зимняя пяденица (х 1,2); 8 — зеленая дубовая листовертка (х0,5). Желуди: 9 — желудевый Долгоносик(х 1,5). Почки: 10— грушевый листовой слоник (х 1,5). Ветви: 11 — темная мягкотелая (х 1). Кора ствола и ветвей: 12— зеленая узкотелая златка (х2); 13 — дубовый заболонник (*0,5); 14 — дровосек-рагий (х0,4). Древесина: 15— жук-олень (х0,3); 16 — большой дубовый У^ч (х0,5). Корни: 17— корневая орехотворка (х 3); 18— майский хрущ, личинка (х0,2); 19 —
полостый щелкун (х 1)
массы микроорганизмами-редуцентами. Потребляя кислород и выделяя диоксид углерода при дыхании, животные оказывают влияние на химический состав атмосферы. Животные, главным образом насекомые, участвуют в опылении растений. Многие виды животных, преимущественно почвенных, воздействуют на процессы почвообразования при помощи рыхления и перемешивания почвенной массы, удобрения почв экскрементами.
Перемещаясь из одних биогеоценозов в другие, животные участвуют в функционировании межбиогеоценозных «каналов», в осуществлении межэкосистемных связей.
В процессе совместного развития (коэволюции) разные виды растений и животных приспособились друг к другу. Численность видов, вовлеченных в систему адаптивных взаимосвязей, различна, причем характер их взаимовлияний может приобретать самые разнообразные формы. Иногда адаптивные взаимосвязи организмов очевидны, в других случаях сложны и выявляются только с помощью специально проведенных исследований.
Классическим примером коэволюции растений и животных могут служить взаимоотношения между растениями ваточника, бабочками данаидами и голубыми сойками, описанные Дж. Харбор-ном. Автор раскрывает последовательность событий, связывающих эти биологические виды в единую адаптивную систему.
1. В процессе фотосинтеза в тканях ваточника образуются сердечные гликозиды, играющие роль защиты растений от насекомых. Гликозиды горьки на вкус и токсичны для высших животных.
2. Ваточник — основной кормовой объект гусеницы данаиды. Гусеница адаптируется к гликозидам. Токсины накапливаются и долго сохраняются в организме насекомого.
3. Покидая растение-хозяина, взрослая бабочка в своем теле содержит определенный запас защитных для нее токсических ве-ществ-гликозидов.
4. Голубые сойки делают попытку использовать бабочек в качестве источника пищи, но ядовитые гликозиды вызывают отравление. У соек появляется симптом тяжелого заболевания — рвота.
5. Голубые сойки приобретают отрицательный пищевой рефлекс: прекращают поедать бабочек. Отрицательная пищевая реакция в форме условного рефлекса увязывается ими с внешним видом ядовитой пищи — яркой окраской бабочки, которая становится предостерегающей.
Указанная схема, вероятно, неполно отражает действительность, но она довольно ярко характеризует основные закономерности адаптивных реакций видов, составляющих биоценоз, в процессе их эволюции.
Жизнедеятельность биоценозов сопровождается синтезом и распадом органического вещества. Они стимулируют биотический круговорот — важнейший фактор длительного (теоретически — вечного) существования жизни на Земле.
В природных БГЦ геохимические циклы почти полностью замкнуты, а процессы притока-оттока веществ почти полностью сбалансированы. Растения, синтезирующие органические вещества из простых неорганических соединений, «зафиксированы» в почве своих местообитаний. Минерализация фитомассы происходит на месте их произрастания. Хотя животные, обладающие двигательной активностью, меньше привязаны к месту своего рождения, большинство аборигенов не покидают экосистему, к которой они хорошо приспособлены и которая наиболее пригодна для их обитания. Поэтому минерализация почти всей зоомассы, как и фотомассы, происходит там, где она образовалась.
Продукты разложения отмерших частей растений и тел животных захороняются в почву. Гумус обогащается питательными веществами, разнообразными макро- и микроэлементами. Плодородие почв хотя и медленно, но возрастает. Из года в год, из века в век биологическая продуктивность БГЦ увеличивается.
Относительная замкнутость биотического круговорота, сбалансированность процессов синтеза и распада органических веществ в БГЦ — одна из характерных черт природных комплексов, находящихся в стабильном (климаксном) состоянии. Однако «фоновая» биогеохимическая обстановка в биогеоценозах разных географических зон неодинакова. Это объясняется различиями экологических условий, сложившихся в тундре, тайге, степях, пустынях и тропиках.
Так, в тундровых БГЦ мало солнечного света и тепла, особенно в зоне вечной мерзлоты. Здесь произрастают многолетние растения с коротким периодом вегетации, доминируют мхи и лишайники. Из-за сильных морозов и метелей выживают лишь низкорослые древесные растения: карликовая береза, ива. Беден видовой состав не только флоры, но и фауны. В тундре обитают лемминги, северные олени, горностаи, песцы, а из птиц — белые куропатки и полярные совы. Синтез и распад органического вещества в тундре замедленны, скорость геохимических циклов снижена, химические реакции в почвах заторможены. Геохимия кислых тундровых ландшафтов характеризуется увеличением в почвах водородных ионов, уменьшением подвижных форм кальция, азота, меди, других макро- и микроэлементов. Поскольку почвы бедны растворами химических соединений, воды в тундре обычно слабо минерализованы. Они пресные или даже ультрапресные, как дистиллированные.
Таежные (лесные) БГЦ расположены южнее тундровых. В тайге по сравнению с тундрой лето продолжительнее, зима короче. Климатические условия благоприятны для роста деревьев. Огромную территорию тайги покрывают хвойные леса, переходящие на юге в смешанные и широколиственные. В таежных БГЦ фауна разнообразнее. Так, в тундре обитает один вид семейства оленьих, в тайге — около десяти. Синтез и распад органического вещества в тайге происходят активнее, чем в тундре. Однако и здесь скорость биотического круговорота невелика, так как химические элементы в телах долгоживущих деревьев задерживаются надолго. Геохимия таежных БГЦ характеризуется высокой концентрацией водородных ионов в почвах. Почвы здесь кислые, и только в местах залегания известняков они приобретают нейтральную или щелочную реакцию. В большинстве биогеоценозов в почвах отмечается дефицит содержания подвижных форм кальция, калия, фосфора, кобальта, йода, других макро- и микроэлементов. Минерализация воды в разных БГЦ неодинакова. В водах таежного севера минеральных веществ обычно меньше, чем в водах южных лесов.
Степные БГЦ сформировались в условиях теплого сухого климата, благоприятного для роста травянистой растительности. Видовой состав животных зде'сь разнообразнее, чем в тайге. Среди млекопитающих преобладают грызуны и копытные. Биотический круговорот в степных БГЦ ускорен. Темпы синтеза органического вещества высоки, так как степные травы растут быстро. Большая часть фитомассы ежегодно отмирает, формируются мощные черноземы, богатые гумусом. Хотя в степях, как и в тайге, разложение органических веществ сопровождается образованием гумусовых и иных кислот, в степных БГЦ почвы некислые. Кислоты нейтрализуются кальцием и другими щелочными элементами, образующимися при минерализации фитомассы. Ресурсы подвижных макро-и микроэлементов в почвах степных БГЦ обычно велики, и это создает благоприятные условия для минерального питания новых поколений быстрорастущих травянистых растений. Биогеохимия почв влияет на реакцию воды, которая обычно нейтральная или щелочная. Концентрация минеральных солей в ней обычно высокая (жесткая вода).
Пустынные БГЦ расположены, как правило, в глубине континентов с жарким сухим климатом. В них осадков выпадает мало, испарение усилено. Растительность бедная, разреженная. Видовой состав животных невелик. Из копытных встречаются антилопы и верблюды, хорошо приспособленные к жизни в пустыне. Масштабы синтеза и распада органических веществ ничтожны. Влияние живого вещества на водную миграцию химических элементов крайне слабое. Питательных веществ в почве мало. Там, где грунтовые воды находятся на небольшой глубине, они засоляют почву и образуются солончаки. Реакция воды чаще всего щелочная. В такой воде много солей, она жесткая.
Биогеоценозы тропических лесов сформировались в теплом влажном климате. Видовой состав растений и животных здесь необычайно богат. Процессы синтеза и распада органических веществ протекают интенсивно, биотический круговорот ускорен. При бурном разложении органических веществ образуется много кислот. Под влиянием воды, обогащенной кислотами, происходят разрушение почв и вынос подвижных химических элементов в
океан. И все же полного перемещения всех химических элементов из БГЦ не происходит, так как часть их захватывается организмами и вновь вовлекается в геохимический цикл.
Своеобразие биотического круговорота и геохимической обстановки, обусловленное шарообразностью Земли, повлияло на распределение видов растений и животных в местообитаниях тундровых, таежных, степных, пустынных биогеоценозов и т. д.
Замкнутость биотических круговоротов природных биогеоценозов относительна. В процессе эволюции биосферы круговороты изменяются, происходит поступательное развитие и преобразование БГЦ. Например, болотная экосистема с травами, растущими в прибрежной полосе, может трансформироваться в травяной биогеоценоз. Причина этого в том, что после каждого годичного геохимического цикла определенное количество органических веществ, не подвергшихся полной минерализации, захороняется и остается на дне болота в форме ила. Дно поднимается, болото мелеет. Оно все более и более зарастает травами и в конце концов превращается в травяной биогеоценоз.
Энергия Солнца — движущая сила биотического круговорота и разнообразных проявлений жизни на всех уровнях ее организации: биосферном, биоценотическом, популяционном, организменном, клеточном и молекулярном. Солнечные лучи улавливаются орга-низмами-продуцентами и трансформируются ими в химическую энергию углеводов, белков и жиров своих тел. Затем эта энергия с фитомассой передается консументам и редуцентам.
Переход энергии по пищевой (трофической) цепи подчиняется правилу десяти процентов. Согласно ему организмы каждого трофического уровня усваивают в среднем лишь 10 % (от 7 до 17 %) энергии. Остальная часть энергии превращается в тепло, рассеивается и теряется.
Потеря энергии при ее переносе с одного трофического уровня на другой определяет структуру экологической пирамиды, отражающей соотношение биомасс между продуцентами, консументами и редуцентами. В наземных биогеоценозах живая масса продуцентов больше, чем консументов, биомасса консументов первого порядка больше, чем консументов второго порядка, и т. д. В обратный поток (от редуцентов к продуцентам) поступает лишь ничтожное количество изначально вовлеченной энергии (не более 0,25 %). Поэтому о круговороте энергии говорить нельзя. Поток энергии движется в одном направлении. Он подчиняется закону однонаправленности потока энергии. Поток солнечной энергии определяет организованность биогеоценозов, их сбалансированность, оптимальность взаимоотношений между живой и неживой природой, флорой и фауной.
В БГЦ, развившихся в процессе эволюции биосферы, сформировались оптимальные пищевые цепи, сложилось энергетическое равновесие. Трофически и энергетически взаимосвязанные виды организмов — растения, производящие органическое вещество, растительноядные животные, потребляющие фитомассу и преобразующие ее в органическое вещество своих тел, хищники, поедающие травоядных, и т. д. — приспособились друг к другу и к условиям своего существования. Ни один вид гетеротрофных организмов не способен расщеплять органическое вещество растений до конечных продуктов распада (диоксида углерода, воды и минеральных солей). Каждый вид потребляет лишь часть содержащейся в органическом веществе энергии, отдавая в среду то, что могут использовать другие. Переход веществ и энергии с одного трофического уровня на другой не причиняет вреда ни одной из взаимодействующих популяций.
Пищевые цепи имеют важное биогеоценотическое значение. Они играют большую роль в функционировании биогеоценоза, его самоуправлении и саморегуляции. БГЦ как биокосная система состоит из двух взаимосвязанных подсистем: управляемой и управляющей. Управляемой системой являются растения, производящие органическую массу, т. е. продуценты. Управляющая система БГЦ состоит из консументов и редуцентов, т. е. из комплекса взаимосвязанных организмов, потребляющих органическое вещество растений и переводящих его в другие формы. Рост растений регулируют растительноядные животные — они поедают излишнюю биомассу. Растительноядных, в свою очередь, «контролируют» хищники и паразиты. Они препятствуют безмерному размножению растительноядных и излишнему выеданию растительности. Над паразитами есть «управляющие» сверхпаразиты и т. д.
По правилу Эшби, управляющая система не может быть проще, чем управляемая; она всегда сложнее. Механизмы саморегуляции биогеоценозов сложны и необычайно тонки. В зависимости от состояния природного комплекса они могут приобретать разнообразные, нередко парадоксальные формы. В определенных условиях управляющая система становится управляемой. Так, например, снижение биологической продуктивности растений в экстремальных условиях (засуха, наводнение и т. д.) по типу обратной связи неизбежно приведет к уменьшению численности растительноядных, хищников, т. е. трансформации управляющей системы в управляемую.
Развитие сообщества растений и животных, населяющих БГЦ, во многом определяется и управляется информационными процессами. Информация проявляется на всех уровнях организации жизни — от молекулярного до биосферного. У. Джексон отмечал, что то, что мы видим, идя по прерии, — это не что иное, как миллиарды биологических «бит» взаимодействующей информации — молекул ДНК и РНК в растительных видах. Генетическая программа определяет развитие особей. Информационная система играет решающую роль во взаимоотношениях между отдельными особями, популяциями, разными видами в фитоценозах и зооценозах, растениями и животными, составляющими биоценоз, между биотой и окружающей ее средой. Суммарный фонд информации природных комплексов необычайно велик. Он играет огромную роль в процессах, связанных с регуляцией и управлением биогеоценозов, их устойчивостью и надежностью.
В процессе длительной эволюции природные биогеоценозы приобрели особые свойства, называемые экологической устойчивостью и надежностью. Экологическая устойчивость выражается в способности природной системы сохранять свои структуру и функции в условиях внешних воздействий. Экологическая надежность — понятие более общее, чем устойчивость. Механизмы экологической надежности носят более широкий и фундаментальный характер.
В качестве универсального принципа обеспечения надежности биогеоценозов, как и других биокосных и биологических систем, выступает гетерогенность их структуры. Гетерогенность проявляется на всех уровнях организации биогеоценоза. При рассмотрении биогеоценоза как целого особенно четко проявляется его парацел-лярная гетерогенность. Каждый БГЦ связан с более или менее однородным участком земной поверхности, однако его однородность не носит абсолютного характера (Дылис).
В пространстве и во времени биогеоценозу присуща изменчивость как процессов, в нем происходящих, так и его структурной организации. Признаки изменчивости наблюдают в фитоценозе, зооценозе, в биокосных и неживых телах, во взаимосвязях между ними, в функционировании БГЦ как системы.
Гетерогенность состава биосистем как принцип обеспечения их надежности особенно ярко проявляется на популяционном уровне (Злобин). Для любой популяции дикорастущего растения характерна высокая гетерогенность по набору экотипов, имеющих генетическую обусловленность, по возрастности, виталитету, многим морфологическим и биохимическим признакам особей. Дикорастущие растения заметно отличаются друг от друга по размеру, высоте, количеству цветков, срокам цветения и плодоношения. Гетерогенность популяции увеличивает ее адаптационные возможности и экологическую надежность. От надежности молекулярных, клеточных и тканевых систем многоклеточных организмов зависит их свойство сохранять высокую жизнеспособность и естественную резистентность.
Натурбиогеоценозы могут практически бесконечно функционировать в пределах неизбежных экзогенных и эндогенных флуктуаций. В них сформировались механизмы самосохранения и самовосстановления. В пределах естественных для системы суточных, сезонных, межгодовых и вековых колебаний в ней поддерживается подвижное экологическое равновесие, и биогеоценоз, постоянно обновляясь, сохраняет свою структуру и функцию; он может «работать» бесконечно долго.
Однако экологическая устойчивость и надежность БГЦ небеспредельны. Под воздействием тех или иных факторов, чаще всего экстремальных, механизмы регуляции БГЦ могут быть подавлены, нарушены. В этих случаях биогеоценоз может измениться, трансформироваться. Так, например, лес на севере сменяется тундрой, а на юге — степью или даже пустыней. Роль природных факторов в изменении биогеоценозов велика. Но она несравнима с теми грандиозными изменениями в природе, которые происходят под влиянием разнообразной деятельности людей.
3.3. СЕЛЬСКОХОЗЯЙСТВЕННЫЕ ЭКОСИСТЕМЫ
Под сельскохозяйственной экологической системой понимают природный комплекс, преобразованный сельскохозяйственной деятельностью человека. Как и любые биокосные системы, они имеют многоуровневую, иерархически обусловленную организацию. Сельскохозяйственные экосистемы низшего ранга входят в состав системных образований более высокого уровня и им соподчинены. Сельскохозяйственной экосистемой наивысшего иерархического уровня считается агросфера — поверхность суши, вовлеченная в сельскохозяйственное производство (Злобин).
Агросфера состоит из экологических систем низшего уровня — аграрных ландшафтов, которые, в свою очередь, представляют совокупность полевых, пастбищных, ферменных биогеоценозов. В аграрных ландшафтах человек создал природно-технические системы для обитания растений (теплицы, оранжереи и т. д.), млекопитающих животных (коровники, свинарники, конюшни, кошары), птиц (птичники, птицефабрики), полезных насекомых (ульи для пчед и т. д.). Теплицы и оранжереи, скотные дворы, животноводческие фермы и комплексы, ульи и аквариумы — это природно-технические системы, функционирующие по принципу искусственных биогеоценозов.
Агросфера — продукт сельскохозяйственной деятельности человека — главного компонента антропогеоценозов. Первую обстоятельную характеристику антропогеоценозов дал В. П. Алексеев. Антропогеоценоз — биокосная система, компонентами которой являются люди, человеческие поселения (по терминологии В. П. Алексеева, человеческие популяции — в биологическом понимании, хозяйственный коллектив — в социально-экономическом) и окружающая человека живая и неживая природа.
Антропогеоценоз может не ограничиваться пределами населенного пункта. Он может распространяться на всю территорию, которую население эксплуатирует, на все пространство, являющееся объектом хозяйственной деятельности людей.
Сельскохозяйственная экология находится в стадии развития, поэтому еще нет единого общепризнанного определенйЯ агробиогеоценозов и агроэкосистем. Так, по Н. Ф. Реймерсу, агробиогеоценоз характеризуется как неустойчивая экологическая система с искусственно созданным или обедненным видом естественным биотическим сообществом, дающим сельскохозяйственную продукцию. Биотической частью агробиогеоценоза служит агробиоценоз — созданное и регулярно поддерживаемое сообщество, обладающее малой экологической надежностью, но высокой урожайностью (продуктивностью) одного или нескольких видов (сортов, пород) растений или животных. Следовательно, под агробиогеоценозом подразумевается экосистема, предназначенная не только для выращивания растений, но и для разведения животных.
Б. М, Миркин, Г. С. Розенберг и Л. Г. Наумова дают несколько иную характеристику агробиогеоценоза. Они считают, что агробиогеоценоз — это полевой участок, который представляет собой совокупность агробиоценоза и почвы с прилегающим слоем атмосферы. Агробиогеоценоз, по авторам, — элемент агроэкосистемы. Экосистема — безранговое понятие, совокупность биогенных и абиогенных компонентов участка суши, используемого для производства сельскохозяйственной продукции (растительной и животной). Следовательно, понятия агробиогеоценоза неодинаковы. Биогеоценоз, по Н. Ф. Реймерсу, больше напоминает то, что Б. М. Миркин и его соавторы называют агроэкосистемой. В то же время термином «агроэкосистема» нередко обозначают и теплицы, и оранжереи, и поля, и животноводческие фермы, и индивидуальные или коллективные хозяйства, и аграрные ландшафты, и агросферу.
Авторы данного учебного пособия используют экологические термины в следующем понимании:
агросфера — глобальная экосистема, объединяющая всю территорию Земли, преобразованную сельскохозяйственной деятельностью человека;
аграрный ландшафт — экосистема, сформировавшаяся в результате сельскохозяйственного преобразования ландшафта (степного, таежного и т. д.);
сельскохозяйственная экологическая система (или сельскохозяйственная экосистема) — экосистема на уровне хозяйства; агробиогеоценоз — поле, сад, бахча, теплица, оранжерея; пастбищный биогеоценоз — природное или культурное пастбище, используемое для выпаса сельскохозяйственных животных;
ферменный биогеоценоз — конюшня, коровник, свинарник, кошара, птичник, животноводческий комплекс, зоопарк, виварий.
Несмотря на большое разнообразие, сельскохозяйственные экосистемы разных уровня и иерархии имеют много общего, что отличает их от природных экосистем. Отличительная особенность сельскохозяйственных экосистем в том, что они — продукт преобразования природных БГЦ. Преобразуя натурбиогеоценозы в сельскохозяйственные экосистемы, человек изменял живые и неживые компоненты природных комплексов: растительный и животный мир, почву, воду. Естественную растительность уничтожали, заменяли новой, необходимой для удовлетворения потребностей человека. Исчезли многие виды диких животных; их заменили домашние (сельскохозяйственные) животные.
В сельскохозяйственных экосистемах (агробиогеоценозах, пастбищных и ферменных БГЦ) пищевые цепи вовлечены в сферу деятельности человека. В них изменена экологическая пирамида. На вершине экологической пирамиды встал человек. Своеобразие экологической пирамиды, на вершине которой находится человек, — специфический признак любой сельскохозяйственной экосистемы.
В сельскохозяйственных экосистемах спектр видов растений и животных обеднен. Аграрные и ферменные биогеоценозы мало-компонентны. Малокомпонентность — один из признаков сельскохозяйственных экосистем.
Антропогенное преобразование природных ландшафтов в аграрные происходило в течение тысячелетий.
Первой системой земледелия была подсечно-огневая, которая у некоторых племен сохраняется до сих пор. При этой системе земледелия проводят сжигание леса, а на освободившейся территории, покрытой золой, — посев и выращивание растений. Из-за быстрого истощения почв срок использования полей невелик. В умеренных широтах он порядка десяти лет, а в тропиках всего 2—3 года. Поля, утратившие плодородие, забрасывали. В результате сукцессионных процессов естественная растительность постепенно возрождалась, плодородие почв восстанавливалось. На некогда покинутых территориях вновь сжигали леса и высвободившиеся земли опять вовлекались в сельскохозяйственный оборот.
Подсечно-огневую систему земледелия сменила залежно-переложная. Суть ее в том, что после 5—10-летнего использования поля превращаются в залежь, затем в целину. Зацелинение бывшей пашни обусловливало постепенное восстановление плодородия почв и способствовало освобождению полевого участка от сорняков. Сорные растения не способны конкурировать с такими степными злаками, как ковыль, типчак, — из целинного травостоя сорняки обычно выпадают.
Залежно-переложную систему в некоторых регионах применяют и в настоящее время. Так, бахчи арбузов в низовьях Волги перемещают с одного места на другое. «Кочевка» арбузных бахчей — эффективный метод борьбы с заразихой — сорняком-паразитом, резко снижающим урожай арбузов.
Прогресс в растениеводстве тесно связан с развитием животноводства. При беспрерывном использовании одних и тех же полей, садов и огородов, получении на них устойчивых высоких урожаев необходимо проводить мероприятия по поддержанию « воспроизводству плодородия почв. Почвы обогащают удобрениями, главным образом навозом. Отходы животноводства оказались полезными для развития растениеводства. В то же время растениеводство — важнейший фактор развития животноводства, так как фитомассу полей (лесов, садов и т. д.) используют для кормления сельскохозяйственных животных. Таким образом, при оптимальном развитии растениеводства и животноводства увеличивается производство зерна, овощей, корне- и клубнеплодов, фруктов, мяса, молока, яиц, шерсти и другой сельскохозяйственной продукции.
Во многих аграрных ландшафтах, где природные механизмы саморегуляции и оптимизации экологической обстановки в сельскохозяйственных биогеоценозах не были нарушены, сельское хозяйство развивалось эффективно. Здесь агроландшафт не оказывал губительного влияния на окружающую среду, на сопряженные с ним природные комплексы.
Однако гармония в природе наблюдается не всегда. Исторические данные свидетельствуют о том, что уже в период древнего мира отмечены случаи экологических катастроф, связанных с деградацией почв, исчезновением водоемов, изменением климата, подрывом самих основ земледелия, растениеводства и животноводства.
По мере расширения агросферы и интенсификации сельского хозяйства экологические катастрофы стали чаще и тяжелее. Экологические проблемы сельского хозяйства особенно резко обострились в современную эпоху научно-технического прогресса.
Другая особенность сельскохозяйственных экосистем — появление в них искусственного отбора и селекции растений и животных.
Окультуривание растений и одомашнивание животных происходили на заре формирования сельского хозяйства, примерно 12— 14 тыс. лет назад. Растениеводство и животноводство в разных регионах возникали неодновременно. Эти две отрасли сельского хозяйства не всегда были тесно связаны между собой. До сих пор существуют племена, которые не занимаются земледелием, они потребляют в основном животную пищу. Известны земледельцы, не занимающиеся животноводством. Они производят продукты растениеводства, а животную пищу получают охотой и рыболовством в обмен на свою продукцию у скотоводов.
На начальных этапах развития сельского хозяйства человек проводил искусственный отбор растений и животных стихийно, бессознательно, без четкого представления о конечных результатах. И только с конца XVIII в. стали осуществлять целенаправленный отбор растений и животных по заранее разработанному плану. За относительно короткий период выведены разнообразные высокоурожайные сорта растений и продуктивные породы животных, отвечающие социально-экономическим потребностям людей.
Долгое время искусственный отбор растений имел одну цель: получить высокий урожай. В результате растения утеряли свой «оборонный потенциал», способность противостоять болезням. Поэтому в агробиогеоценозах нередко возникали вспышки массовых болезней растений.
О том, как происходил процесс одомашнивания животных, можно судить по археологическим данным и результатам современных исследований по изучению содержания диких животных в неволе (в зоопарках идр.). Можно предположить, что в первую очередь приручению и одомашниванию подвергались животные с определенными поведенческими фенотипами: неагрессивные, покорные. Особей, проявляющих резко выраженную реакцию страха и крайнюю агрессивность, обычно исключали из разведения. Искусственный отбор и селекция сыграли важную роль в выведении высокопродуктивных пород крупного рогатого скота, свиней, кур и других видов млекопитающих и птиц.
Однако искусственный отбор и селекция в некоторых случаях имели негативные последствия. В аграрных ландшафтах успешнее размножались животные, приспособленные для жизни в условиях, созданных человеком (пастбища, хлевы и т. д.). С увеличением зависимости от искусственных условий местообитания и питания сохранились такие генотипы, которые вряд ли выжили бы в дикой природе. При заботе со стороны человека генетически неполноценные животные обычно не вымирают. При этом «неполноценные», «вредные», «отрицательные» гены не исчезают, а продолжают накапливаться и размножаться в популяциях. Это привело к возникновению и накоплению наследственного бремени («генетического груза») в животноводстве.
Домашние животные по сравнению со своими дикими предками менее устойчивы к болезням. Среди них возникают массовые заболевания.
Процесс доместикации животных до сих пор не закончен. И в настоящее время проводят одомашнивание копытных (лося, марала идр.), птиц (страусов, диких индеек, куропаток, перепелов идр.).
Важная особенность сельскохозяйственных экосистем — целенаправленное или непреднамеренное антропогенное изменение условий жизни культурных растений и домашних животных.
Искусственный отбор и селекция растений и животных сопровождались преобразованием других компонентов экосистем: почвы, воды и т. п.
При помощи агротехнических мероприятий природные почвы преобразованы, окультурены. Такие почвы приобрели иные физико-химические и биологические свойства; появились искусственно созданные почвы (агроземы), не имеющие природных анало-гов.
Искусственные почвы иногда используют в парниках и теплицах. Искусственная почва, как и естественная, должна быть достаточно буферной к воздействию растений, обладать способностью «саморегулировки» и т. д. В Болгарии для выращивания роз и табака применяют искусственную почву, получившую название перлитовой. В определенных микроклиматических условиях минерал перлит увеличивает свой объем, в нем возрастает количество пор, повышаются влагоемкость и буферность материала. Такие же пористые почвы формируются на Камчатке на вулканическом пепле. Искусственная почва в какой-то мере имитирует естественную (Карпачевский).
Антропогенные изменения почв в аграрных ландшафтах нередко имели негативные последствия. На обрабатываемых полях, в садах и огородах почвообразование заметно замедлилось. Это обусловлено рядом причин. Одна из них — безвозмездное отчуждение фитомассы с урожаем и связанное с этим ослабление процессов образования гумуса, его накопления в почве.
Другая причина деградации почв — антропогенная эрозия (водная, ветровая и др.). Во многих регионах земного шара некогда плодородные земли подверглись эрозии и утратили плодородие. Они оказались непригодными для сельского хозяйства.
В некоторых аграрных ландшафтах изменились гидрологические условия: понизилась влажность воздуха и почв при сведении лесов, климат стал суше. Вырубка лесов в субтропической и тропической зонах иногда приводила к иссушению почв, их деградации. Уровень грунтовых вод снижался, пересыхали и исчезали реки. В некоторых местах возникли пустыни. Процессы опустынивания характерны для Африки, Передней и Средней Азии, других регионов земного шара. Снижение уровня грунтовых вод, уменьшение влажности почв отмечены в аграрных ландшафтах, где проводили осушение заболоченных территорий.
Влажность почв и отчасти воздуха повышается при поливе садов, огородов, полей, лугов и пастбищ. Создание искусственных водоемов иногда способствует подтоплению почв и заболачиванию обширных территорий.
Характерной особенностью аграрных ландшафтов как экосистем является то, что в них пищевые (трофические) цепи и биотический круговорот вовлечены в сферу человеческой деятельности. Человек оказывает влияние на условия питания растений и животных. Он улучшает условия минерального питания растений при помощи внесения в почвы удобрений, обогащения воздуха С02 (в теплицах и т. д.). Разработаны специальные технологии подкормки сельскохозяйственных культур, садово-ягодных и фруктовых растений, луговых трав. Предложены режимы кормления животных в условиях их пастбищного и стойлового содержания.
Сельскохозяйственным экосистемам свойственна разомкну-тость биотического круговорота. Разомкнутость круговорота химических элементов определена особенностями организации сельскохозяйственных экосистем, их структурой и функцией, той ролью, какую они выполняют. Основное назначение сельскохозяйственных экосистем — снабжать население продуктами растениеводства и животноводства. Эту задачу можно решить только за счет коренной перестройки потоков веществ в сельскохозяйственных экосистемах и в окружающей их среде. Фитомассу, выращенную на полях, в садах, огородах, теплицах, используют в аграрном ландшафте лишь отчасти — для питания сельского населения и кормления сельскохозяйственных животных. Эта относительно небольшая часть биомассы преобразуется в сельскохозяйственных экосистемах и возвращается в почвы агробиогеоценозов в форме навоза. Макро- и микроэлементы, изъятые из почв с урожаем, не полностью возвращаются в нее с навозом. С органическими удобрениями возмещается только приблизительно четвертая часть химических элементов, изъятых из почв с урожаем. Большая часть химических элементов, связанных в фитомассе, в виде зерна, корне- и клубнеплодов, фруктов мигрирует за пределы сельскохозяйственных экосистем, главным образом для снабжения городского населения продуктами питания, для обеспечения нужд промышленности растительным сырьем.
За пределы сельскохозяйственных экосистем мигрируют химические элементы, содержащиеся не только в фитомассе, но и в зоомассе — в телах сельскохозяйственных животных и птиц, в получаемых от них продуктах: молоке, шерсти, яйцах и т. д.
Химические элементы, экспортируемые с продуктами растениеводства и животноводства за пределы аграрных ландшафтов, выключаются из биотического круговорота сельскохозяйственных экосистем. Поступая с экскрементами людей в канализационные системы городов, других населенных пунктов, они вовлекаются в геологический круговорот.
Утечке химических элементов из сельскохозяйственных экосистем способствует традиционный способ утилизации трупов павших животных. Химические элементы, содержащиеся в них, при захоронении в могильники надолго выключаются из биотического круговорота сельскохозяйственных экосистем.
Биотический круговорот нарушается также в результате притока в сельскохозяйственные системы минеральных, азотных, фосфорных, калийных удобрений, пестицидов и других веществ.
В сельскохозяйственные экосистемы ежегодно поступает значительное количество разнообразных пестицидов, предназначенных для борьбы с вредными насекомыми, сорными растениями и другими вредителями сельского хозяйства. Пестициды включаются в пищевые цепи и биотический круговорот.
Следовательно, в сельскохозяйственных экосистемах изменяется баланс химических веществ: приток — отток. Это влияет на геохимическую обстановку в аграрных ландшафтах, состояние флоры и фауны, биологическую продуктивность и воспроизводи -тельную способность культурных растений и сельскохозяйственных животных, качество продуктов растениеводства и животноводства.
Неблагоприятные изменения геохимической обстановки в сельскохозяйственных экосистемах могут иметь негативные последствия: стать причиной заболеваний растений (эпифитотий), животных (эпизоотий) и людей (эпидемий). Поэтому необходимо разработать методы регуляции и оптимизации биотического круговорота в сельскохозяйственных экосистемах и окружающей их среде.
В аграрных ландшафтах изменен поток энергии. В них наряду с солнечной энергией используют дополнительные энергетические ресурсы (энергетические субсидии). Энергетическая субсидия — это вспомогательный поток энергии, затрачиваемый на обработку земли, орошение, удобрение почв, борьбу с вредными насекомыми ит. Д.
Энергоемкость агроэкосистем закрытого грунта как особой формы растениеводства очень высока. Закрытый грунт используют для выращивания сельскохозяйственных растений, главным образом овощей и цветов, под защитой стекла или прозрачной пленки, что создает под ними благоприятные экологические условия. Природно-технические системы закрытого грунта бывают неотапливаемыми (парники, вегетационные домики) и отапливаемыми (теплицы идр.).
Закрытый грунт позволяет получать несколько урожаев в год, но это крайне трудоемко и обычно требует больших затрат дополнительной энергии.
Дополнительную энергию используют в сельскохозяйственных системах в самых разнообразных формах, например сжигание топлива в двигателях внутреннего сгорания тракторов, комбайнов и др. Много энергии овеществлено в производстве удобрений и пестицидов, используемых в растениеводстве.
Энергетические субсидии в земледелие растут из года в год. Повышение урожайности культур сопровождается значительным повышением их энергоемкости.
Существуют скрытые затраты дополнительной энергии и на производство животноводческой продукции. Энергетические субсидии необходимы для строительства животноводческих помещений, поддержания в них оптимального микроклимата (тепло, свет и др.), охраны животных от заболеваний и т. д.
При создании сельскохозяйственных экосистем осуществляли «энергетический» отбор растений и животных. Суть его в том, что в результате искусственного отбора и селекции преимущества получали организмы, более полно использующие энергетические Дотации. Растениеводами и животноводами были выведены, размножены и широко распространены такие формы растений и жи-В0ТНЫХ, которые используют дополнительную энергию не столько на саморегуляцию и самосохранение, сколько на синтез органического вещества живой массы своих тел, т. е. фитомассы (урожая) и зоомассы (мяса, яиц и т. д.).
Г. Т. Одум отмечал, что чрезмерное одомашнивание превращает организмы в живые машины для производства органики. Таковы куры-несушки и молочные коровы, которые с трудом могут стоять. При интенсификации растениеводства и животноводства большая часть энергии для производства зерна потребляется не от Солнца, а из ископаемого топлива.
Увеличение вложений дополнительной энергии в сельское хозяйство подчиняется закону снижения энергетической эффективности природопользования. На начальном этапе растениеводства на 1 кДж человеческой мускульной энергии, затрачиваемой на обработку почвы, земледелец получал от 5 до 15кДж растительной пищи. В настоящее время ситуация коренным образом изменилась—для получения 1 кДж пищи человек затрачивает от 10 до 20 кДж энергии. В СШАс 1900 до 1970 г. количество энергии, затрачиваемой на 1 Дж производимой пищи на пашне, возросло в 10 раз, а урожайность увеличилась всего в 2 раза. Общая энергетическая эффективность сельскохозяйственного производства (соотношение вкладываемой и получаемой с готовой продукцией энергии) снижается во всех странах мира. Становится очевидным, что дальнейшее наращивание энергетических субсидий в сельском хозяйстве чревато еще более опасными последствиями: загрязнением атмосферы, гидросферы, педосферы, окружающей среды и, следовательно, ухудшением условий жизни людей, опасностью возникновения у них заболеваний.
Сельскохозяйственные экосистемы отличаются от природных характером их регуляции и управления. Природные биогеоценозы саморегулируемы, самоуправляемы. В полевых, пастбищных и ферменных биогеоценозах, т. е. во всех сельскохозяйственных экосистемах, механизмы саморегуляции и самоуправления нарушены. Процессы, протекающие в сельскохозяйственных экосистемах, регулируют не столько механизмы саморегуляции и самоуправления, сколько деятельность человека. Человек выполняет роль и «внутреннего», и «внешнего» регулятора. По мере углубления интенсификации и специализации сельскохозяйственного производства характер управления сельскохозяйственными экосистемами изменяется, оно становится все менее «внутренним» и все более «внешним».
На протяжении большей части истории сельского хозяйства США основным регулятором сельскохозяйственных экономических экосистем был фермер, заинтересованный в том, чтобы передать свою ферму потомкам в лучшем состоянии. Сельскохозяйственная экосистема, управляемая фермером, приспосабливалась к изменению местных экологических условий, реагировала на них адекватно. В последнее время регулирующие функции "от фермера переходят к другим владельцам — корпорациям, федеральному правительству, находящимся далеко от хозяйства (фермы), заинтересованным не столько в сохранении сельскохозяйственных угодий, сколько в получении максимума растениеводческой и животноводческой продукции.
Управление сельскохозяйственными системами «издалека» оказалось менее совершенным, а в ряде случаев вредным, так как стало трудно, а порой невозможно проводить постоянный строгий учет изменений местных экологических условий и процессов, протекающих в аграрных, пастбищных и ферменных БГЦ (Одум).
Резкий переход от «внутреннего» к «внешнему» управлению сельским хозяйством происходил и в нашей стране в период преобразования единоличных хозяйств в коллективные. Сельским хозяйством стали управлять из центра — района, области, республики, столицы страны. Механизм управления сельскохозяйственными экосистемами преобразовался из адекватного, экологичного в неэкологичный. Произошли негативные изменения сельскохозяйственных экосистем, их разрушение и гибель.
Итак, преобразование природных ландшафтов в сельскохозяйственные сопровождалось изменением живой и неживой природы, пищевых цепей, геохимических циклов. Экосистемы из многокомпонентных, богатых информацией превратились в малокомпонентные, информативно обедненные или из гетерогенных в гомогенные (рис. 16). На рисунке графически изображена зависимость между
Чрезвычайно
высокая Высокая Низкая Нулевая
СТРУКТУРА ЛАНДШАФТА
Гомогенная
Г етерогенная
ВИДЫ СЕЛЬСКОХОЗЯЙСТВЕННОГО ПРОИЗВОДСТВА
Интенсивное
специализированное
растениеводство
Промышленное
животноводство
Пастбищное животноводство
Разрушение Природные
БГЦ БГЦ
Рис. 16. Зависимость между интенсивностью антропогенного фактора и изменением
структуры ландшафта
$
Естественная экосистема Сельскохозяйственная экосистема
х ? • я ^ и и ^
•е-р я я
е-о з |
f&f§
«Ш&Ч
11-5 О.Л g Р Я
* ж « “
gS^g
Wooo
>< ± s
„Q S О •г 4) н
fgs
н ш * о ~ Г)
О. СО
" О S S н
о
со о
ж S ж г
2« О- о
О Я
я я
* я
о
о «
СЗ
S
S S 3 Л ? s Л
о Щ s
о
о
о 5 н 2 х 4>
-&S s
О С S
0.0 Ж * * X S Я “
s * а
в щ
о? _ X
я 5 -
XX Я н 4> »о>»
ё 2 ^
н
4>
?&
Н
О
?
О о
* с
о
a s
X Ш
4) 2
§оЗ
Е*
S -
О Я
5 S
С 2
I Я I о
5 0? SU4SUS' инЗиОу
5 2 5 п 2 л '
ь 5
s 5 ? ° о со
о « ?=* с s
S н U о О о о х 5 я
Я D 9 ^
О О S Я О. X
Я S
spa
5 4)
?е со
Ю DQ I 3 •• О О —
s-G* о 2 I но i2 I
О О. 2 со р ~ О • • у о 2 S-*
S t е*в й ей
1 н о ООН
4 * 3- ^ « о - J
0 S 3 S
2 СО О ?2
§ о s S
а « § у « s s g s х ^ о gs S g
1 .Ня
5 ою «
|з ° д
et н
ч> w —<
^ ж s N S
g дЮ О
о 5 л И *ЭН5 о со 3 п. О svd ж
•©ж о g о. 5 I- о о с g-s В о
й *
U
Йй
Ч Л W X
О X
4> о
СО
я
>,йй г? 03 _н 4) Н
О. о о о
S 4)
в о н X
CQ
о
н
S я .
>,4)0?
н О X е;ю
х
о.
о
X
н
н
S
п
о
X
Н
Я
я
оЗ
X
S
о
2* CQ С о
со
о Н
>, Св 5 Н-
$ О
Его
о X S 3 X X со -О в Ч О 4)
ан я S 5 Н-й w
О. со О о.
S*
S ж
в :
оЗ
X
СО
я
н
О?
оЗ
X -о га <и о.
??
•е*
аэ
н u
| | в sso
•е-й *
g Э «
SX3
ж Э
4)
а
о
* С небольшими дополнениями из учебного пособия Б. М. Миркина, Ю. А. Злобина «Агрофитоценология с основами агроэкологии» (Уфа, 1990).
Я
о) га - O.S н 4) -Я
. «
5 х
in ^
4) 4)
2 со 9 i=i
®3 О
Д с
S 1 а> X Н О
2 *
2 w ^ х я X о
а в а*
xs!
8s&
(—4) ?*<
05^
* ^ 4)
s^ss н н О Я
о х ?
СО Ю 2
я га Я >^ о. со
Й § 5в s
1зс I’ll
ess|5-gg
g S« о 5 о Ж о о О со о СО 4) (J ьР х et Си о, =;
^ я ^ я S я
Л 03
X м н о О со в га 2 О.
x'g
О Л со Ч sr о сг си с
2. Свойства различных экосистем, влияющие на их стабильность и способность
накапливать питательные элементы (по Вудменси, 1987)
Экосистемные (биогеоценотические) свойства
Экосистемы (биогеоценозы)
природные
(натурбиогеоценозы)
культивируемые
(агробиогеоценозы)
Высокая
Низкая
»
Значительный
Много
Высокие
Много
Низкая
Высокое
Низкая
Высокая
»
Малый
Мало
Низкие
Мало
Высокая
Низкое
Скорость инфильтрации Величина стока Эрозия
Растительный покров
Опад и другие остатки
Потери почвенной влаги на испарение
Почвенные коллоиды
Температура почвы
Генетическое разнообразие
боте человека. Как только влияние человека на агробиогеоценозы прекращается, они «дичают» и через ряд сукцессионных изменений превращаются в природные биогеоценозы. М. В. Марков, изучавший агробиогеоценозы в средней полосе европейской части России, установил, что в хозяйствах лесной зоны заброшенные посевы яровых или озимых культур рано или поздно неизбежно превращаются сначала в луг, а затем в лес (березняк или осинник).
Таким образом, агробиогеоценозам присущ ряд специфических свойств, отличающих их от биокосных систем других форм.
3.4.3. КУЛЬТИВИРУЕМЫЕ РАСТЕНИЯ КАК КОМПОНЕНТ АГРОБИОГЕОЦЕНОЗА
Культивируемое растение — главный компонент не только экологической, но и социально-экономической системы. Посевы сельскохозяйственных культур, кормовых и лекарственных трав — это прежде всего социальный заказ с целью удовлетворения потребностей людей в той или иной продукции растительного происхождения: пище, кормах, сырье для промышленности и т. д. Культивируемые растения — не только продукт природы, но и объект человеческого труда. Поэтому их рост и развитие определяются как природными, так и антропогенными факторами.
В настоящее время в культуре возделывают около 4000 видов растений. Чаще всего проводят посевы культурных, реже — диких растений.
Несмотря на относительно большое разнообразие культурных растений, наиболее широкое распространение у земледельцев получили следующие (по Злобину):
яровые однолетние растения — возделывают наиболее широко, Имеют период вегетации от нескольких недель до нескольких месяцев;
с другом в специфические взаимоотношения и имеют определенный тип обмена веществом и энергией между собой и другими явлениями природы.
3.4.2. ОСОБЕННОСТИ АГРАРНЫХ БИОГЕОЦЕНОЗОВ
Отличительные особенности агробиогеоценозов от других форм экологических систем, как природных, так и сельскохозяйственных, приведены в таблице 1.
Сравнительная оценка агробиогеоценозов и других форм био-косных систем проводилась не только в России, но и за рубежом. Большой интерес с точки зрения агробиогеоценологии представляет работа Р. Г. Вудменси (табл. 2).
Данные таблицы 2 свидетельствуют о том, что скорость инфильтрации воды в почвенную толщу в аграрных биогеоценозах намного ниже, чем в природных. Просачивание воды в почву в определенной мере зависит от поверхностного стока. Чем меньше воды стекает с поверхности земли, тем больше ее впитывается в почву. Уменьшению стока в природных БГЦ способствует покрывающая почву растительность во время ее вегетации. В аграрных БГЦ культивируемые растения произрастают ограниченный срок: от времени высева семян до уборки урожая. В остальное время года почва либо оголена после вспашки, либо слегка прикрыта пожнивными остатками, почти не препятствующими стоку воды. Почвы аграрных БГЦ по сравнению с природными содержат меньше органических коллоидов, обладающих водоудерживающей способностью. Видовое разнообразие растений и животных в природных биогеоценозах (на-турбиогеоценозах) большое, в аграрных — малое. В натурбиогеоце-нозах популяции растений разных видов приобрели способность к сообитанию. В процессе длительной эволюции они приспособились друг к другу, их экологические ниши хорошо дифференцированы. Иная картина в агробиогеоценозах — в них экологические ниши дифференцированы слабо, во взаимоотношениях друг с другом у растений резко выражена конкуренция за питательные вещества и другие ресурсы.
Аграрные биогеоценозы отличаются от природных соотношением фитомассы, сосредоточенной в наземной и подземной сферах (т. е. в атмосфере и грунте). Коэффициент, отражающий отношение фитомассы, сосредоточенной в атмосфере, к фитомассе, сосредоточенной в грунте, в агробиогеоценозах составляет 0,5—0,8, а в природных БГЦ он всего 0,07—0,25. Следовательно, основное количество фитомассы в агробиогеоценозах сосредоточено в атмосфере, а в природных БГЦ — в земле.
В аграрных БГЦ в отличие от природных механизмы саморегуляции, самовоспроизведения и самосохранения подавлены. Их длительное существование возможно только при постоянной за-
&
Естественная экосистема Сельскохозяйственная экосистема
х - 1
§га О СУ С
о й „
лу 03 _
з- S -а SO“ н н У « s 2 g;§§ " о *s п ”gs | S 5
р?
го о о
* « * s s 3
t Ж К
ай “
§&§ А « ь
о« J 4S5
g 5 |
«Р
е| S га
ы О CQ
g G и
2
§§?
S$d.
аз р
PnS
^ О) о
а 5
я ^ о м N я s s asai
« Л !4 га
Ю I 03 Н ?> _
йЗДс
ЗёЫ
«и нЭ ;
® и д (
о _ < m « :
i л 5 <и у
Й Ь у
Й2в
R ° га со * S
8 Я
н ж H л OhS® ft>>4 4) О X О О И ^ СО СО
Р 5 * ^
<*xo 5g:s?s
sagliseESi
Зжг2
Bw I s “SnSai s*'B.5
S ' х о *
0 я S Д S i2^iu
S' -fl О и я
Овуюо
1 s 2 о J t- 5 S о Й Я ®<Н о S Я с и w Я
° t- -о
s а* *
с_ 4) СС ai uSSSH у S Й Й I о {г SS а и _ о х о s я I s >,й со Л ^ У с
S га а> cq Н Е-
в п &л Эю о S х S « ?.о
. N Т А Я 1
х °* ft № ^ - =i - • - о га
5F s О ^ й е* - ?
?&3^|§*
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК