Глава 5 Собирание воспоминаний

We use cookies. Read the Privacy and Cookie Policy

Глава 5

Собирание воспоминаний

Великая пирамида Хеопса в долине Гизы стоит уже сорок пять веков – остров вечности среди вечно движущихся песков близ Каира. Ее размеры вызывают оторопь, да и любой из ее громадных блоков уже сам по себе поражает величиной. Никто сейчас в точности не знает, каким образом эти камни весом по две с половиной тонны вырубали в каменоломне, доставляли на место строительства, поднимали на высоту 140 метров. По оценкам древнегреческого историка Геродота, на ее сооружение ушло двадцать лет. Иными словами, 2,3 миллиона блоков были помещены на должные места с ошеломляющей скоростью – по одному в минуту.

Египетский фараон Хеопс повелел возвести Великую пирамиду, чтобы та стала его гробницей. Если бы нас не отделяла от страданий сотни тысяч рабочих охлаждающая историческая дистанция, мы бы осудили эту пирамиду как жестокую демонстрацию власти себялюбивого тирана. Но, может, лучше простить Хеопса и просто любоваться этим фантастическим достижением безымянных тружеников, воспринимая пирамиду не как памятник фараону, а как свидетельство изобретательности и потрясающих способностей человека?

Хеопс применил весьма прямолинейную стратегию: если хочешь, чтобы тебя помнили, сооруди массивное сооружение из материала, который достаточно долговечен, чтобы противостоять разрушительному действию времени. Вот и способность мозга запоминать зависит от его материальной структуры. Что же еще может отвечать за стойкость воспоминаний, которые не стираются в течение всей жизни? Ну да, иногда мы что-то забываем или вспоминаем неточно, к тому же каждый день прибавляются новые воспоминания. Именно потому и сравнивал Платон память с другим материалом, более податливым, чем камни пирамид:

В уме у человека существует как бы восковая доска… Ее можно считать даром Памяти, матери муз, и когда мы хотим припомнить что-то… мы как бы подносим воск к тому, что воспринимаем и думаем, и они отпечатываются на дощечке, словно печать с кольца.

В Античном мире деревянные дощечки, покрытые воском, встречались часто: они служили аналогом наших современных блокнотов. Острым стилом на воске писали, чертили, рисовали. Затем специальным инструментом с плоским краем воск разглаживали, тем самым готовя дощечку для последующего использования. Восковая дощечка, это рукотворное запоминающее устройство, так и напрашивается в метафоры для человеческой памяти.

Платон, разумеется, не имел в виду, что наша черепная коробка действительно заполнена воском. Он представил себе лишь некий аналог – материал, который способен сохранять свою форму, которую при этом можно еще и менять. Скульпторы и инженеры формуют или лепят «пластичные» материалы и куют или штампуют «ковкие». А родители и учителя лепят юные умы. Может быть, это не просто метафора? Может быть, образование и другой приобретаемый опыт в буквальном смысле меняют материальную форму и структуру мозга? Часто говорят, что мозг пластичен, но что это означает?

Нейробиологи давно предполагают, что коннектом – аналог платоновской восковой дощечки. Нейронные связи – вещь материальная, что хорошо видно по снимкам, полученным с помощью электронного микроскопа. Подобно воску, эти связи достаточно устойчивы, чтобы оставаться одними и теми же на протяжении долгого времени, но при этом достаточно пластичны, чтобы меняться.

Одно из важных свойство синапса – его сила, то есть «вес» (относительная ценность) его мнения при голосовании, которое проводит нейрон, «решая», когда породить нервный импульс. Известно, что синапсы могут как усиливаться, так и ослабляться. Можно назвать это изменением синаптического веса (ИСВ). Что же происходит с синапсом, когда он становится сильнее? Открытия, сделанные множеством нейробиологов, которые занимались этим вопросом, могли бы составить целую книгу. Здесь я приведу лишь упрощенный ответ, он понравился бы френологам: синапсы усиливаются, делаясь крупнее. Вспомните, что по одну сторону синаптической щели располагаются везикулы с нейротрансмиттером, а по другую сторону – рецепторы нейротрансмиттера. Синапс усиливается, создавая больше везикул и больше рецепторов. Чтобы выделять больше нейротрансмиттера при каждом акте секреции, он вырабатывает больше везикул. Чтобы проявлять более высокую чувствительность к определенному количеству нейротрансмиттера, он мобилизует больше рецепторов.

Кроме того, синапсы могут возникать и исчезать: это явление я называю рекомбинацией связей. Давно известно, что молодой мозг создает синапсы в несметных количествах – нейроны соединяются в сеть. Синапс возникает в точке контакта между двумя нейронами. По причинам, которые еще не до конца понятны, в этой же точке собираются везикулы, рецепторы и другая синаптическая аппаратура. Случается, что юный мозг сам уничтожает синапсы – удаляя эту аппаратуру из точек контакта.

В 1960-е годы нейробиологи полагали, что образование и самоуничтожение синапсов к зрелости затухают. Но это мнение основывалось скорее на абстрактном теоретизировании, чем на эмпирических доказательствах. Возможно, ученые невольно сравнивали развитие мозга со сборкой какого-нибудь электронного прибора. Чтобы изготовить такой прибор, нужно соединить множество проводов, но мы никогда не подключаем их по-новому, после того как устройство заработало. А может быть, исследователи думали, что силу синапса очень легко изменить, подобно компьютерному софту, но при этом считали, что сами синапсы – нечто жесткое и фиксированное подобно компьютерному «железу».

В последние десять лет нейробиологи полностью поменяли свое мнение по этому поводу. Теперь повсеместно признано, что синапсы возникают и исчезают даже в мозгу взрослого человека. Убедительные доказательства этого наконец-то удалось получить напрямую – наблюдая за синапсами в живом мозгу при помощи нового метода – двухфотонной микроскопии. На рис. 23 показано полученное этим методом изображение дендрита коры головного мозга мыши, меняющегося на протяжении двух недель. (Цифра в левом нижнем углу каждой картинки обозначает количество дней, прошедших с начала эксперимента.)

Рис. 23. Свидетельство рекомбинации: на дендрите коры головного мозга мыши появляются и исчезают шипики

От дендрита отходят выросты – дендритные шипики. Большинство синапсов между возбуждающими нейронами завязываются на шипиках, а не на стволе дендрита. На этой иллюстрации некоторые шипики не изменялись в течение всех двух недель эксперимента, зато другие появлялись (например, отмеченный треугольником) или пропадали (например, отмеченный звездочкой). Перед нами явное свидетельство того, что синапсы возникают и исчезают. Ученые продолжают спорить о том, насколько часто это происходит, но все сходятся на том, что такая рекомбинация вполне возможна.

Почему ИСВ и рекомбинация так важны? Эти два типа коннектомных трансформаций происходят в течение всей нашей жизни. И мы должны изучать их, если хотим понять личностные изменения как явление, которое охватывает все наше земное существование. Неважно, сколько нам лет: мы никогда не перестаем запасаться новыми воспоминаниями, и помешать этому могут лишь некоторые болезни мозга. По мере взросления и старения мы порой начинаем жаловаться, что нам стало труднее учиться, но даже пожилые люди способны приобретать новые знания и навыки. И скорее всего, в такие перемены вносит свой вклад ИСВ и рекомбинация.

Но есть ли у нас какие-то доказательства этого? Свидетельства, указывающие на ИСВ при накоплении воспоминаний, получены нобелевским лауреатом (2000 г.) Эриком Канделем и его сотрудниками. Они изучали нервную систему Aplysia californica (морской улитки аплизии, называемой также морским зайцем), желеобразного существа, обитающего в приливных лужах калифорнийских пляжей. Если потревожить это животное, оно втягивает жабры и сифон. Кроме того, оно может изменять свою чувствительность к беспокоящим воздействиям – иными словами, обладает своего рода памятью, пускай и примитивной. Мы уже выяснили, что в основе такого поведения лежит работа нервных путей, идущих от органов чувств к мышцам. Кандель выявил одну определенную связь в соответствующем нервном пути и показал, что изменения в силе этой связи имеют отношение к той «простой памяти», о которой мы упоминали выше.

Задействована ли рекомбинация в хранении воспоминаний? Я уже упоминал об идее френологов, согласно которой обучение – это утолщение коры головного мозга. В 1970-х–1980-х годах Уильям Гринаф и другие исследователи (подсчитывая синапсы в утолщающейся коре у крыс, выращиваемых в обогащенной среде) обнаружили доказательства того, что такое утолщение вызывается увеличением количества синапсов. Эти находки позволили некоторым энтузиастам предложить неофренологическую теорию: воспоминания накапливаются путем создания новых синапсов.

Однако ни тот, ни другой подход не помог по-настоящему пролить свет на загадку сохранения воспоминаний. Метод Канделя оказался непригоден для мозга, более похожего на наш с вами: в таком мозгу воспоминания, судя по всему, не локализованы в отдельных синапсах. Подход же Гринафа также грешит неполнотой, ибо подсчет синапсов еще не говорит о том, каким образом они организованы в узор. Более того, если даже увеличение числа синапсов (скажем, при утолщении коры) коррелирует с процессом обучения, не очень ясно, случайна такая связь или нет.

Чтобы по-настоящему раскусить загадку памяти, нам нужно выяснить, задействованы ли в ней процессы изменения синаптического веса и рекомбинации связей, и если да, то как именно. Я уже говорил о теории, согласно которой рисунки связей, влияющие на память, представляют собой клеточные ансамбли и синаптические цепочки. Сделаем еще один шаг и предположим, что эти узоры возникают благодаря ИСВ и рекомбинации. Рассмотрим те вопросы, которые в результате появляются. Независимы ли эти два процесса – или они идут совместно? Почему мозг использует оба, а не один? Можно ли объяснить какие-то ограничения, свойственные памяти, как неполадки в ходе накопления информации, происходящего благодаря этим процессам?

Помимо удовлетворения нашего любопытства касательно памяти, исследование ИСВ и рекомбинации связей может иметь и практическое значение. Допустим, ваша задача – создать лекарство, улучшающее способность накапливать воспоминания. Если вы верите в неофренологию, то вы, может быть, попытаетесь разработать препарат, который позитивно действует на процессы, играющие роль в выращивании новых синапсов. Но если неофренологи ошибаются (скорее всего, так оно и есть), подобное выращивание новых синапсов может оказать на мозг совсем не то действие, что вы планировали. И вообще, хотим ли мы усовершенствовать свою память или предотвратить ее неполадки, нам необходимо прежде узнать кое-что об основополагающих механизмах ее действия.

* * *

Мы уже видели, каким образом клеточный ансамбль может сохранять в себе ассоциации между идеями как связи между нейронами. Но как мозг вообще создает клеточный ансамбль? Это коннекционистский вариант вопроса, которым с давних пор задавались философы: откуда берутся идеи и их ассоциации? Возможно, некоторые из них – врожденные. Но очевидно, что все остальные должны появляться в результате обучения и накопления нового опыта.

За много веков философы вывели целый ряд принципов, согласно которым в процессе обучения и накопления нового опыта появляются новые ассоциации. На первой строчке этого списка – совпадение, иногда его еще называют смежностью во времени или пространстве. Если вы увидите снимки поп-певицы с ее дружком-бейсболистом, вы поймете, что между ними существует ассоциация. Второй фактор – повторение. Единичного лицезрения этих знаменитостей, сфотографированных вместе, может оказаться недостаточно для того, чтобы в вашем сознании возникла ассоциация, но если вы с тошнотворной частотой каждый день натыкаетесь на их совместные изображения в каждом журнале и газете, вы неизбежно впитаете в себя эту новую ассоциацию. Для некоторых типов ассоциаций играет важную роль и хронология, расположение объектов во времени. В детстве вы много раз повторяли алфавитную последовательность букв, пока не выучивали ее наизусть. Вы заучивали ассоциацию каждой буквы со следующей, поскольку буквы всегда шли друг за другом в определенном порядке. Ассоциация же между поп-исполнительницей и ее приятелем в описанном случае – двусторонняя, поскольку они всегда появляются перед вашими глазами одновременно.

Поэтому философы предположили, что нам удается впитать ту или иную ассоциацию идей, когда одна неоднократно сопутствует другой или следует за ней. Коннекционисты заключают:

Если два нейрона неоднократно активируются одновременно, связи между ними усиливаются в обоих направлениях.

Это правило пластичности применимо для впитывания двух идей, неоднократно появляющихся совместно – скажем, как в случае с поп-певичкой и ее другом. Для обучения ассоциациям между идеями, появляющимися перед вами одна за другой, коннекционисты предложили сходное правило:

Если два нейрона неоднократно активируются последовательно, усиливается связь, направленная от одного ко второму.

Кстати, в обоих правилах предполагается, что связи усиливаются навсегда или, по крайней мере, надолго: так ассоциация закрепляется в памяти.

Правило, описывающее последовательную активацию нейронов, предложил Дональд Хебб. Кроме того, в своей книге «Организация поведения» (1949) он ввел термин «клеточный ансамбль». Оба варианта правила (и «одновременный», и «последовательный») позже стали называть правилами синаптической пластичности Хебба. При этом оговаривается, что в обоих правилах есть «зависимость от активности»: пластичность повышается благодаря изменению активности нейронов, вовлеченных в создание соответствующего синапса. (Есть и другие способы повышения синаптической пластичности, не включающие в себя изменение нейронной активности: например, введение некоторых препаратов.) Обычно хеббовская пластичность описывает лишь синапсы между возбуждающими нейронами.

Хебб намного опередил свое время. Тогда у нейробиологов не существовало методов для выявления синаптической пластичности. Измерения параметров образования импульсов многие десятилетия проводились путем введения металлических проводов в нервную систему. Поскольку конец провода оставался за пределами нейрона, этот метод назвали «внеклеточной» записью параметров. По каждому проводу шли сигналы, соответствующие импульсам от нескольких нейронов, – словно разговоры в переполненном баре, накладывающиеся друг на друга. Этот метод применяется и поныне. Именно его использовали Ицхак Фрид и его коллеги, чтобы обнаружить «нейрон Дженнифер Энистон». Осторожно маневрируя кончиком провода, можно выделить сигнал единичного нейрона – подобно тому, как вы приближаете ухо ко рту вашего друга в шумном баре, чтобы лучше слышать его на фоне остальных голосов.

Внеклеточная запись оказалась достаточно подходящим методом для обнаружения нервных импульсов, однако она не позволяла измерить слабые электрические сигналы отдельных синапсов. Эту задачу впервые успешно решили в 1950-е годы, вставив в отдельный нейрон стеклянный электрод с чрезвычайно острым наконечником. Подобная «внутриклеточная» запись настолько точна, что с ее помощью можно детектировать гораздо более слабые сигналы – ну как если бы вы засунули ухо внутрь рта вашего барного собеседника. Кроме того, внутриклеточный электрод можно применять для того, чтобы с помощью электрического тока стимулировать нейрон к испусканию импульсов.

Чтобы измерить силу синапса, который осуществляет связь, направленную от нейрона А к нейрону Б, мы вставляем электроды в оба нейрона. Затем стимулируем образование импульса в нейроне А, в результате чего синапс выделяет нейротрансмиттер. После этого мы измеряем электрическое напряжение в нейроне Б, который отвечает на этот стимул всплеском сигнала, фиксируемым приборами. Величина этого всплеска как раз и характеризует силу синапса.

Можно измерять не только силу синапса, но и изменения этой силы. Чтобы создать эффект хеббовской пластичности, мы стимулируем образование импульса у пары нейронов. Как выяснилось, повторная стимуляция (последовательная или одновременная) усиливает синапсы – в полном согласии с двумя вариантами правила Хебба, изложенными ранее.

После того как произошло такое наведенное изменение синаптической силы, оно может держаться до конца эксперимента – самое большее несколько часов, ибо не так-то просто сохранять нейроны живыми после того, как в них вонзили электроды. Впрочем, более грубые и примитивные опыты, которые еще в начале 1970-х делались на целых группах нейронов и синапсов, указывают на то, что изменения синаптической силы могут держаться несколько недель или даже дольше. Вопрос устойчивости является для нас ключевым, если хеббовская пластичность действительно служит механизмом накопления и хранения памяти: ведь некоторые воспоминания не покидают нас всю жизнь.

Такие эксперименты, проводившиеся в 1970-е годы, дали нам первые реальные свидетельства роста силы синапсов. К тому времени уже успела появиться и теория хранения воспоминаний, основанная на идеях Хебба. Согласно наиболее простому варианту этой теории, формирование нейронной сети начинается с возникновения между нейронами каждой пары, составляющей сеть, слабых синапсов в обоих направлениях. В дальнейшем это предположение окажется шатким, но мы его пока примем, чтобы легче представить саму теорию.

Вернемся к эпизоду вашего первого поцелуя – реальному событию, которое оставило след в вашей памяти. «Нейрон магнолии», «нейрон кирпичного дома», «нейрон возлюбленного», «нейрон самолета» и т. п. – все они активировались благодаря раздражителям вокруг вас, и произошло это, вероятно, быстро и мощно. Если применить к этому случаю «одновременную» версию правила Хебба, можно заключить, что всё это импульсообразование послужило усилению синапсов между упомянутыми нейронами.

Эти усилившиеся синапсы все вместе образуют клеточный ансамбль – если мы слегка пересмотрим понятие такого ансамбля и примем, что он представляет собой набор возбуждающих нейронов, связанных друг с другом через сильные синапсы. В нашем исходном определении такого допущения не было. Теперь же оно нам понадобилось, поскольку наша сеть содержит множество слабых синапсов, которые к данному клеточному ансамблю не принадлежат. Эти синапсы существовали и до вашего первого поцелуя – и после него они не переменились.

Слабые синапсы не оказывают влияния на процесс припоминания. Активность распространяется от нейрона к нейрону в пределах клеточного ансамбля, но не выходит за его границы, поскольку синапсы, наведенные от ансамбля к другим нейронам, чересчур слабы для активации этих внешних нейронов. Поэтому наше новое определение клеточного ансамбля работает точно так же, как работало старое.

Аналогичная теория приложима и к синаптической цепочке. Допустим, последовательность стимулов активирует некую последовательность идей. Каждая идея представлена характерным рисунком образования импульсов группой нейронов. Если группы, соответствующие этой последовательности, неоднократно дают импульсы, то, согласно «последовательной» версии правила Хебба, будут усиливаться все существующие синапсы, осуществляющие связь в направлении от нейронов в данной группе к нейронам в соседней. Это и есть синаптическая цепочка, если мы опять-таки пересмотрим ее определение, включив в него лишь узор из сильных связей.

Если эти связи достаточно сильны, образование импульсов будет распространяться по цепочке, не нуждаясь в какой-то последовательности внешних раздражителей. Любой стимул, активирующий первую группу нейронов, спровоцирует воспоминание о целой последовательности идей, как описано в главе 4. А каждое воспоминание в этой последовательности будет еще больше усиливать связи в цепочке – согласно хеббовской теории пластичности. Так вода в реке постепенно углубляет русло, и тем самым воде становится всё легче течь.

Уметь запоминать очень важно, однако столь же необходимо уметь забывать. Когда-то ваши нейроны, отвечающие за Дженнифр Энистон и Брэда Питта, были связаны в клеточный ансамбль с помощью сильных синапсов. Но настал день, когда вы впервые увидели Брэда с Анджелиной. (Знаю-знаю, это был грустный день. Надеюсь лишь, что вы все-таки не впали в отчание.) Благодаря хеббовской пластичности окрепли связи между вашими нейронами, отвечающими за Брэда и Анджелину, и эти нейроны образовали новый клеточный ансамбль. Что же стало со связями между нейронами Брэда и Дженни?

Можно придумать аналог хеббовского правила, который будет годиться и для процесса забывания. Возможно, связи между двумя нейронами ослабляются, если один неоднократно оказывается активным, когда другой неактивен. Это будет ослаблять синапсы между образами Брэда и Дженни всякий раз, когда вы будете видеть Брэда без нее.

Но можно представить себе и альтернативную версию: такое ослабление вызвано прямой конкуренцией между синапсами. Возможно, синапсы между Брэдом и Анджелиной напрямую соперничают с синапсами между Брэдом и Дженни за некое «питательное вещество», которое необходимо синапсам для выживания. Если какие-то синапсы усиливаются, они потребляют больше этого вещества, оставляя меньше пищи другим, которые в результате ослабевают. Пока не очень ясно, существуют ли такие вещества для синапсов, но аналогичные «питательные факторы», как уже выяснено, работают для нейронов. Один из примеров – фактор роста нервной ткани. За его открытие Рита Леви-Монтальчини и Стэнли Коэн получили в 1986 году Нобелевскую премию.

* * *

Древние римляне использовали термин «tabula rasa» для обозначения восковых дощечек, описанных Платоном. Обычно этот термин переводят выражением «чистая доска», поскольку в XVIII–XIX вв. на смену восковым табличкам пришли небольшие доски, на которых писали мелом. В «Опыте о человеческом разумении» философ Джон Локк, много внимания уделявший проблемам ассоциативности, выбрал иное сравнение:

Предположим, что ум есть, так сказать, белая бумага без всяких знаков и идей. Но каким же образом он получает их? Откуда он приобретает тот их обширный запас, который деятельное и беспредельное человеческое воображение нарисовало с почти бесконечным разнообразием? Откуда получает он весь материал рассуждения и знания? На это я отвечаю одним словом: из опыта[10].

Чистый лист бумаги содержит нулевую информацию, но потенциал его бесконечен. Локк уподоблял ум новорожденного младенца белой бумаге, которая готова к тому, чтобы ее заполнили буквы опыта. В рамках нашей теории накопления и сохранения воспоминаний мы предположили, что все нейроны изначально связаны друг с другом: точнее, каждый нейрон связан со всеми остальными. Синапсы при этом слабы, они готовы к тому, чтобы на них «написало свои знаки» хеббовское усиление. Поскольку все возможные связи уже существуют, может возникнуть любой ансамбль клеток. Такая сеть имеет неограниченный потенциал – как чистый лист у Локка.

К несчастью для этой теории, предположение о связи «всех со всеми» явно ошибочно. На самом деле мозгу свойственна иная крайность – скудные взаимные связи. В действительности осуществляется лишь крошечная доля возможных связей. По оценкам специалистов, типичный нейрон имеет десяти тысяч синапсов, а ведь нейронов в мозгу, видимо, около ста миллионов. Причина такого неравенства цифр весьма основательна: синапсы занимают место, как и соединяющиеся нейриты. Если бы каждый нейрон соединялся с каждым, ваш мозг разбух бы до феноменальных размеров.

Так что мозг вынужден обходиться ограниченным количеством связей. Это может вызвать серьезные проблемы при освоении новых ассоциаций. А если бы ваши нейроны, отвечающие за образы Брэда и Анджелины, вообще не были связаны? Когда вы начали бы видеть этих двух звезд вместе, хеббовской пластичности не удалось бы соединить эти нейроны в клеточный ансамбль. А возможности освоить новую ассоциацию попросту нет, если предварительно не налажены нужные связи.

Если вы много думаете про Брэда и Анджелину, весьма вероятно, что и тот, и другая представлены у вас в мозгу множеством нейронов, а не одним. (В главе 4 я писал, что такая модель, предполагающая, что в распознавании образа участвует не один нейрон, а небольшая их доля, более правдоподобна, чем модель «один образ – один нейрон».) Когда под рукой столько подходящих нейронов, вполне вероятно, что некоторая часть ваших «нейронов Брэда» окажется связанной с некоторым количеством ваших же «нейронов Анджелины». Это может оказаться достаточным для создания клеточного ансамбля, нейронная активность в котором способна при рекомбинации связей распространяться от нейронов Брэда к нейронам Анджелины или в обратную сторону. Иными словами, если каждая идея обильно (и даже избыточно) представлена множеством нейронов, процесс хеббовского обучения (освоения новых знаний, идей и т. п.) способен идти вопреки незначительной связанности нейронов.

Точно так же и синаптическая цепочка может возникнуть благодаря хеббовской пластичности, даже если каких-то связей недостает. Представьте себе, что перестала существовать связь, обозначенная на рис. 24 прерывистой стрелкой. Это разорвет отдельные нервные пути, но останутся другие, по-прежнему идущие «от начала до конца», так что синаптическая цепочка по-прежнему будет функционировать нормально. Каждая идея в последовательности представлена здесь двумя нейронами, однако добавление новых нейронов сделает цепочку еще более прочной – способной еще более эффективно противостоять разрушению связей. Опять же такое обильное представление идей позволяет осваивать новые ассоциации даже в условиях малой связанности нейронов.

Рис. 24. Исчезновение «лишней» связи в синаптической цепочке

Уже в античности хорошо знали парадоксальный факт: запомнить больше информации часто легче, нежели запомнить меньше. Ораторы и поэты использовали этот парадокс, разработав мнемоническую технику, названную методом локусов. Чтобы вспомнить большой перечень объектов, они представляли себе, как проходят через анфиладу комнат и в каждой комнате находят свой объект. Возможно, такой метод работал именно потому, что каждый объект был представлен в памяти избыточно.

Итак, незначительная связанность нейронов может являться главной причиной того, что мы запоминаем новую информацию с некоторым трудом. Поскольку требуемые связи не существуют, хеббовская пластичность не помогает накапливать сведения. Отчасти это помогает сделать избыточность, но разве не может быть и какого-то иного решения?

К примеру, почему бы не создавать новые синапсы по мере необходимости, именно в тот момент, когда нужно куда-то записать новое воспоминание? Можно предложить еще один вариант правила пластичности Хебба: «Если нейроны неоднократно активируются одновременно, между ними возникают новые связи». По этому правилу действительно могли бы возникать клеточные ансамбли, но оно противоречит одному из основополагающих свойств нейронов: взаимные помехи между электрическими сигналами в разных нейритах пренебрежимо малы. Рассмотрим пару нейронов, контактирующих друг с другом без посредства синапса. Они могут его создать, но в данном случае маловероятно, чтобы это событие произошло благодаря одновременной активации нейронов. А поскольку нет синапса, наши нейроны не способны «услышать» друг друга или «узнать», что они одновременно дают нервный импульс. Рассуждая аналогичным образом, можно заключить, что теория возникновения новых синапсов по мере необходимости вряд ли подходит и для описания процесса образования синаптических цепочек.

Рассмотрим тогда другую возможность: не исключено, что появление синапсов – процесс случайный. Вспомним, что нейроны связаны лишь с тем поднабором нейронов, с которым они контактируют. Возможно, время от времени нейрон случайным образом выбирает нового партнера из числа своих соседей и создает синапс. Казалось бы, это противоречит интуитивным предположениям, но представьте себе процесс завязывания дружбы. Перед тем как вы с кем-то заговорите, почти невозможно предсказать, станете ли вы друзьями с этим человеком. Ваша первая встреча вполне может оказаться случайной – на вечеринке, в спортз але или даже на улице. Но как только вы заговорили с этим незнакомцем, у вас возникает представление о том, могут ли ваши отношения перерасти в дружбу. И этот процесс уже не относится к категории случайных, он зависит от вашей взаимной совместимости. Если судить по моему собственному опыту, люди, у которых очень много очень разных друзей, всегда открыты к случайным встречам, но при этом прекрасно распознают тех, с кем могут «закорешиться». Случайная и непредсказуемая природа дружбы – неотъемлемая часть ее волшебного очарования.

Случайное образование синапсов тоже позволяет новосозданным парам нейронов «разговаривать» друг с другом. Некоторые пары оказываются совместимыми, поскольку они активируются одновременно или последовательно по мере того, как мозг пытается сохранить воспоминания. Их синапсы усиливаются благодаря хеббовской пластичности, и возникают клеточные ансамбли или синаптические цепочки. Таким путем синапсы для освоения новой ассоциации могут возникать, даже если изначально они не существовали. После первой неудачи в освоении новой информации или навыка мы можем в конце концов добиться в этом успеха – благодаря тому, что наш мозг постоянно наращивает собственную способность к обучению.

Однако создание новых синапсов в конечном счете привело бы к построению чересчур большой нейронной сети. Из соображений экономии наш мозг должен сам уничтожать те синапсы, которые не нужны в процессе обучения. Возможно, эти синапсы сначала делаются слабее из-за работы механизмов, о которых мы говорили раньше (вспомните, что происходит, когда вы забываете об ассоциации между Брэдом и Дженни), и это ослабление постепенно приводит к исчезновению определенных синапсов.

Это своего рода борьба за существование среди синапсов, и тут выживают наиболее приспособленные – те, что вовлечены в процесс запоминания. Они постепенно становятся сильнее. Те же, что не участвуют в этом процессе, слабеют и в конце концов исчезают. Чтобы восполнить запас, всё время создаются новые синапсы, так что их общее число остается постоянным. Целый ряд ученых – и среди них Джеральд Эдельман и Жан-Пьер Шанжё – разработали множество версий этой теории, которую называют нейрод арвинизмом (нейронным дарвинизмом).

Согласно этой теории, обучение аналогично эволюции. Тот или иной вид живых существ со временем меняется, словно некий божественный разум целенаправленно меняет его конструкцию. Но Дарвин заявлял, что эти изменения возникают случайным образом, а мы в конечном счете замечаем лишь положительные, поскольку результаты отрицательных изменений отбраковываются в ходе естественного отбора, при котором выживают наиболее приспособленные. Если верна теория нейронного дарвинизма, то кому-то может показаться, что синапсы создаются чьей-то разумной волей, что они возникают по мере необходимости, лишь когда требуются для создания клеточных ансамблей или синаптических цепочек. На самом же деле синапсы тоже появляются случайным образом, а затем те, в которых нет нужды, исчезают.

Иными словами, появление новых синапсов – «глупый», случайный процесс, дающий мозгу лишь потенциал для обучения. Сам по себе этот процесс еще не является обучением, вопреки неофренологической теории, о которой упоминалось выше. Вот почему лекарство, способствующее образованию синапсов, может оказаться неэффективным для улучшения памяти, если мозг не будет при этом сам убирать большое количество ненужных синапсов.

Но всё же нейронный дарвинизм – теория умозрительная. Самые масштабные исследования исчезновения синапсов провел Джефф Лихтман. Он исследовал главным образом синапсы, осуществляющие связь, направленную от нервов к мышцам. На ранних стадиях процесса возникающие связи кажутся беспорядочными и неизбирательными, поскольку каждое мышечное волокно получает синапсы от множества аксонов. Однако со временем ненужные синапсы исчезают, и в конце концов каждое волокно получает синапсы лишь от одного аксона. В данном случае самоуничтожение синапсов улучшает связанность нейронов, делая их связи более избирательными. Лихтману, по вполне понятным причинам, захотелось подробнее рассмотреть это явление, и он стал активным пропагандистом новейших томографических технологий (к этой теме я вернусь в других главах).

На рис. 23, где показаны дендритные шипики, мы видели, что рекомбинацию связей можно изучать и на примере коры головного мозга. Ученые показали, что, когда подопытную мышь помещают в обогащенную среду (как в экспериментах Розенцвейга), большинство новых шипиков коры отмирают в течение нескольких дней, однако значительная их часть остается нетронутой. Оба наблюдения согласуются с концепцией «выживания наиболее приспособленных»: получается, что новые синапсы выживают, лишь если используются для хранения воспоминаний. Однако полученные доказательства пока не слишком убедительны. Коннектомике еще предстоит выявить конкретные условия, при которых новые синапсы выживают или исчезают.

* * *

Мы уже видели, что мозг может не сохранить воспоминания, если не существуют требуемые связи. А значит, изменение веса связей само по себе имеет лишь ограниченную «емкость» для накопления новой информации, если связи между нейронами фиксированны и редки. Согласно теории нейронного дарвинизма, мозг обходит эту проблему, случайным образом создавая новые синапсы, чтобы поддерживать на должном уровне свой потенциал обучения (или даже повышать его), при этом уничтожая те синапсы, которые не приносят пользы. ИСВ и рекомбинация связей не являются независимыми процессами: они влияют друг на друга. Новые синапсы обеспечивают материал для хеббовского усиления, а уничтожение синапсов происходит в том числе и из-за нарастающего ослабления соответствующих связей. Не только ИСВ, но и рекомбинация связей увеличивает информационную емкость.

Еще одно преимущество рекомбинации связей – в том, что она может стабилизировать воспоминания. Чтобы яснее понять идею такой стабилизации, давайте рассуждать шире. Выше я подчеркивал, что воспоминания сохраняются благодаря синапсам. Теперь же следует упомянуть, что существуют доказательства в пользу существования другого мнемонического механизма – основанного на пикообразовании. Предположим, Дженнифер Энистон представлена у вас в мозгу не одним нейроном, а целой группой, организованной в клеточный ансамбль. Как только стимул – образ Дженни – заставляет эти нейроны дать нервный импульс, они начинают возбуждать друг друга посредством синапсов. Сигналообразование в клеточном ансамбле – самоподдерживающийся процесс, он будет идти и после того, как стимул исчезнет. Испанский ученый Рафаэль Лоренте де Но назвал это явление «реверберацией активности» – по аналогии с эхом в каньоне или соборе, которое продолжает слышаться, даже когда уже смолк породивший его звук. Такое самоподдерживающееся образование импульсов объясняет, почему вы способны запомнить только что увиденный объект, который уже не находится перед вашими глазами.

Судя по многим экспериментам, подобное самоподдерживающееся образование сигналов отвечает за кратковременную память – речь идет о периодах в несколько секунд. Однако существуют убедительные доказательства того, что долгосрочная память вообще не требует нейронной активности. Некоторых из утонувших в ледяной воде удавалось вернуть к жизни после того, как они десятки минут были, по сути, мертвы. Хотя их сердце уже не работало, ледяная вода предотвратила необратимые повреждения мозга. Наиболее везучим удалось при этом практически не потерять память, несмотря на то что при таком охлаждении нейроны их мозга были совершенно не активны. А значит, те воспоминания, которые сохранились после такого жестокого опыта, не могут зависеть от нейронной активности.

Как ни удивительно, нейрохирурги иногда намеренно охлаждают тело и мозг. В ходе смелой медицинской процедуры под названием «глубокий гипотермический циркуляторный арест» (ГГЦА) сердце останавливают, и тело пациента охлаждают ниже +18 °C, резко замедляя все жизненные процессы. ГГЦА настолько рискован, что его применяют, лишь когда жизнь больного находится в смертельной опасности. Однако процент успеха в случаях использования этой методики достаточно высок, причем память пациента, пережившего ГГЦА, часто остается неповрежденной, хотя в ходе процедуры его мозг был, по сути, отключен.

Успехи ГГЦА подкрепляют гипотезу «двойного следа» в памяти. Самоподдерживающееся пикообразование – след краткосрочной памяти, тогда как более постоянные, самоподдерживающиеся связи – след памяти долговременной. Чтобы хранить информацию на протяжении долгого периода времени, мозг трансформирует ее: теперь она выражается не активностью нейронов, а их связями. Чтобы вспомнить информацию, мозг снова переводит ее с языка связей на язык активности.

Концепция двойного следа объясняет, почему воспоминания могут храниться в долгосрочной памяти без помощи нейронной активности. Когда первоначально возникающая активность вызывает эффект хеббовской пластичности, информация записывается благодаря связям между нейронами в клеточном ансамбле или синаптической цепочке. В дальнейшем, когда информация вспоминается, эти нейроны активируются. Но в период между записью и припоминанием рисунок активности этих связей может оставаться непроявленным.

Как-то неизящно – иметь целых два способа хранения информации. Возможно, для мозга было бы эффективнее использовать лишь один? Полезная аналогия здесь – компьютеры, они ведь тоже применяются для хранения данных. У компьютера есть две системы хранения информации: запоминающее устройство с произвольным доступом (ЗУПД, оперативная память, random access memory, RAM) и жесткий диск. Тот или иной документ может долго храниться у вас на жестком диске. Когда вы открываете документ в текстовом редакторе, компьютер передает соответствующую информацию с жесткого диска в оперативную память. Когда вы редактируете документ, информация в RAM модифицируется. А когда вы его сохраняете, компьютер передает информацию из оперативной памяти обратно на жесткий диск.

Поскольку компьютеры созданы инженерами-людьми, мы знаем, почему у этих устройств две системы хранения данных. Дело в том, что и у жесткого диска, и у RAM есть свои преимущества. Жесткий диск обладает стабильностью: он может хранить информацию, даже когда отключено питание. Информация же в оперативной памяти легко теряется. Представьте, что в ходе редактирования текста отключилось электричество. Все электрические сигналы внутри компьютера затухают. Когда вы снова включите и загрузите компьютер, вам покажется, что ваш документ остался в целости и сохранности, ведь он лежал на жестком диске. Но если вы вглядитесь, то увидите, что сохранилась лишь прежняя версия текста. Ваша свежая правка, хранившаяся в оперативной памяти, исчезла.

Но если жесткий диск так надежен и стабилен, зачем же использовать еще и RAM? Дело в том, что RAM отличается высокой скоростью. Информацию в оперативной памяти можно модифицировать гораздо быстрее, чем информацию на жестком диске. Вот почему оправданно передавать документ в оперативную память для редактирования и затем отправлять его обратно на жесткий диск для надежного хранения. Часто бывает так: чем стабильнее вещь, тем ее труднее модифицировать.

Стивен Гроссберг, нейробиолог-теоретик, назвал эту взаимозависимость «дилеммой стабильность/пластичность». На нее обращал внимание еще Платон в своем диалоге «Теэтет». Он объяснял огрехи памяти чрезмерной жесткостью или мягкостью «воска на дощечке». Некоторые люди с трудом запоминают новое, поскольку воск у них слишком твердый, и отпечаток на нем оставить нелегко. Другие же испытывают трудности с хранением воспоминаний, поскольку отпечатки слишком легко стираются с их чересчур мягкого воска. Лишь когда воск не слишком тверд и не слишком мягок, он способен и хорошо принимать отпечатки, и долго хранить их.

Взаимозависимостью между стабильностью и пластичностью можно объяснить и то, почему мозг использует два хранилища для информации. Подобно данным в оперативной памяти, рисунок импульсов быстро меняется, вот почему они подходят для активного манипулирования информацией в ходе непосредственного восприятия и обдумывания. Но, поскольку эти узоры легко потревожить новыми впечатлениями и мыслями, они пригодны лишь для краткосрочного хранения сведений. Межнейронные связи, напротив, в этом смысле похожи на жесткий диск. Так как эти связи меняются медленнее, чем рисунок пиков, они меньше годятся для активного манипулирования информацией. Однако они достаточно пластичны для записи данных и достаточно стабильны для их длительного хранения. Гипотермия (охлаждение) гасит нейронную активность, подобно тому как отключение тока стирает оперативную память вашего компьютера. Межнейронные же связи остаются в неприкосновенности, так что долговременная память в результате не страдает. Но недавно приобретенная информация при этом теряется, поскольку она еще не успела перейти из формы активности в форму связей.

Способна ли взаимозависимость стабильности и пластичности также помочь нам понять, почему мозг иногда использует в качестве средства накопления воспоминаний рекомбинацию связей, а не только ИСВ? Благодаря хеббовской пластичности пикообразование в нейронах постоянно увеличивает силу синапсов. Следовательно, сила синапса не так уж постоянна, а значит, и воспоминания, сохраняемые путем изменения синаптического веса, тоже могут оказаться не такими уж стойкими. Вероятно, именно поэтому воспоминания о том, что вы ели вчера на обед, наверняка скоро потускнеют. В то же время само существование синапса может оказаться стабильнее, чем его сила. Воспоминание, сохраненное посредством ИСВ, можно стабилизировать с помощью рекомбинации связей. Скорее всего, так и происходит с информацией, которая не покидает нас всю жизнь (пример – ваше имя). Нестираемые воспоминания, видно, меньше зависят от необходимости поддерживать силу синапсов на постоянном уровне, но больше определяются необходимостью поддерживать само существование нужных синапсов. В качестве более стабильного, но менее пластичного мнемонического средства рекомбинация связей может удачно дополнять изменение синаптического веса.

* * *

Эта глава – смесь эмпирических фактов и теоретизирования. Причем, боюсь, последнего в ней больше. Нам точно известно, что в мозгу действительно происходит ИСВ и рекомбинация связей. Однако не вполне ясно, возникают ли в результате этих явлений клеточные ансамбли и синаптические цепочки. Да и вообще трудно доказать, что эти явления как-то вовлечены в процесс накопления и сохранения воспоминаний.

Один из перспективных методов такого доказательства – искусственным образом «отключить» хеббовскую синаптическую пластичность у подопытных животных, с помощью лекарств или генетических манипуляций влияя на соответствующие молекулы синапсов и затем изучая поведение этих животных, понять, пострадала ли в результате их память и если да, то как именно. Подобные эксперименты уже дали удивительные и многообещающие свидетельства в пользу основных положений коннекционизма. К сожалению, эти свидетельства – лишь косвенные и предположительные. Их интерпретация затруднена, поскольку не существует идеального способа избавиться от хеббовской пластичности, не породив при этом нежелательные побочные эффекты.

Нижеследующая история – моя попытка проиллюстрировать те трудности, с которыми сталкиваются нейробиологи, эмпирически проверяющие мнемонические теории. Предположим, вы – прилетевший на Землю инопланетянин. Земляне кажутся вам уродливыми и жалкими существами, но вам все-таки любопытно узнать о них больше. В ходе своих изысканий вы следите за одним определенным человеком. В кармане он носит записную книжку, время от времени доставая ее и делая в ней какие-то пометки ручкой. Иногда он вынимает книжку, раскрывает и, бросив на нее беглый взгляд, снова убирает в карман.

Такое поведение озадачивает вас, пришельца: вы никогда не слышали о процессе письма и никогда его не видели. Десятки миллионов лет назад ваши далекие предки использовали письмо, однако сейчас эта эволюционная стадия давно и прочно забыта. После долгих размышлений вы приходите к следующей гипотезе: данный человек применяет записную книжку как устройство памяти – то есть прибор для хранения информации.

И вот однажды ночью, дабы проверить свою гипотезу, вы прячете от него эту книжку. Проснувшись утром, несчастный долго бродит по дому, заглядывает под кровать, выдвигает ящики стола и т. п. До конца дня его поведение отличается от обычного, но лишь ненамного. Вы слегка разочарованы, поэтому решаете проделать еще кое-какие эксперименты для проверки своих предположений. Вы вырезаете из книжки несколько листков. Окунаете ее в воду, чтобы смыть значки. Меняете его книжку на принадлежащую кому-то другому.

Данный текст является ознакомительным фрагментом.