Глава 5 Научный рай, бюрократический ад
Глава 5
Научный рай, бюрократический ад
Обычно большие молекулы распадаются под действием соответствующих ферментов, образуя небольшие соединения, которые затем мы разделяем и секвенируем. После получения достаточного количества данных их путем дедукции подгоняют друг к другу для получения полной последовательности. Этот способ, довольно медленный и утомительный, часто требует последовательного расщепления и фракционирования, и применить его к более крупным молекулам, таким как ДНК, нелегко. Очевидно, для секвенирования генетического материала требовался абсолютно новый метод.
Фредерик Сэнгер. Нобелевская лекция, 8 декабря 1980 года
Чтобы попасть в мою новую научную обитель в Национальном институте по изучению неврологических нарушений и инсультов (НИЗ), располагавшемся в городе Бетезда, штат Мэриленд, нужно было пройти мимо множества комнат по темному коридору второго этажа здания под ничего не говорящим названием «Строение № 36». Я получил сотни тысяч долларов для оснащения своей лаборатории, причем стартовый годовой бюджет составлял более миллиона долларов. Вместе со мной сюда приехали большинство моих сотрудников, и я был готов немедленно начать исследования.
Сотни лучших ученых страны работали бок о бок с нами.
К примеру, на первом этаже была лаборатория Маршалла Ниренберга, одного из лауреатов Нобелевской премии за расшифровку генетического кода. Ниренберг показал, что каждой из букв ДНК соответствуют аминокислоты – строительные блоки, из которых состоят белки. Он и его коллеги многому могли нас научить. Мне казалось, я попал в научный рай.
Однако я снова и снова убеждался, что за удовольствие нужно платить. За неделей безмятежного блаженства на паруснике следует наказание в виде штормов и ураганов. Прежде чем в полной мере воспользоваться широкими возможностями НИЗ, мне пришлось иметь дело с неповоротливой бюрократической машиной госаппарата. При поступлении в НИЗ мне была обещана должность высшего разряда – десятая ступень пятнадцатого разряда. К несчастью, кадровик, отвечавший за штатное расписание моей лаборатории, начисто забыл оформить мое назначение на соответствующую должность.
Как это часто случается, чиновник, столкнувшись с неожиданной проблемой, пошел по пути наименьшего сопротивления – просто засунул мои документы в нижний ящик стола и забыл о них. Когда я спрашивал, что происходит с моей зарплатой, мне говорили: мои документы не могут найти, и на то есть какая-то важная причина. К счастью, Розуэллский институт продолжал платить мне зарплату как главному исследователю по нескольким грантам, а то бы у меня несколько месяцев вообще никаких денег не было. Когда кадровика, наконец, приперли к стенке, он признался, что был в таком ужасе от случившегося, что решил вообще ничего не делать.
Это был не единственный повод для беспокойства. Клэр, Дорин Робинсон и Мартину Шриву, моим ведущим сотрудникам, в НИЗе были обещаны штатные должности. Но вскоре после приезда меня вызвали в кабинет заведующего по научной части Ирва Копина и объявили, что Клэр действительно получит постоянную должность, но только через пару лет: они посчитали, что ее научная квалификация не удовлетворяет предъявляемым требованиям.
Найти новый дом тоже оказалось сложнее, чем мы ожидали, из-за довольно высокой стоимости жилья вблизи Вашингтона. Меньший по размеру и не такой новый, как дом в Буффало, стоивший 80 тысяч долларов, здесь обошелся бы в сотни тысяч. Наш агент по недвижимости Барбара Родбелл была новичком в этом бизнесе, и мы были ее первыми (и единственными) клиентами. Наконец мы купили дом в Силвер-Спринге – таунхаус с двумя спальнями за 105 тысяч долларов – и переехали в него вместе с нашим шестимесячным щенком Цезарем, названным так за свои императорские замашки. Я нашел место для стоянки моего 25-футового парусника «Сириус» на верфи в Гейлсвилле – там, где Ист-ривер впадала в Чесапикский залив с многокилометровым пляжем и прекрасными якорными стоянками. Местная экономика поддерживалась доходами от продажи табака и крабового промысла, а старый универсальный магазин с дровяным камином и шахматным столиком в придачу придавал этому местечку неповторимый колорит.
Однажды в выходные я отправился исследовать здешнюю бухту на свой лодке. У меня всегда было пристрастие к высоким скоростям, и, мчась по дороге в Гейлсвилл, я внимательно следил, нет ли поблизости полицейских машин без опознавательных знаков. Я обращал внимание на все необычные машины – например, на коричневый «форд» с двумя мужчинами внушительного вида, сидевшими в автомобиле. Всякий раз, когда я менял полосу или поворачивал, коричневый «форд» следовал за мной. В Хартджесе я вскоре забыл о нем. Но вечером, когда я вернулся в Силвер-Спринг, походив под парусом весь день, оказалось, что он снова рядом! Это стало меня беспокоить, я даже подумал, не отголосок ли это моего антивоенного прошлого, которое решило преследовать меня, когда я стал высокопоставленным госслужащим. Однако оказалось, я волновался зря.
На следующее утро, в понедельник, я обнаружил в своем маленьком кабинете двух ожидавших меня мужчин в темных костюмах, с узкими галстуками. Они встали и, показав мне удостоверения сотрудников Министерства обороны США, объяснили, что хотят обсудить возможность использования моих исследований для обнаружения отравляющих веществ нервно-паралитического действия и соответствующего химического оружия. В этом был определенный смысл, потому что я занимался изучением тех же самых рецепторных белков, которые являются мишенями для нейротоксинов. Несмотря на довольно мрачную тему разговора, меня успокоило, что их интересуют мои исследования, а не я лично.
В первую очередь они хотели знать, могу ли я обнаружить такие отравляющие вещества с помощью белков, с которыми эти вещества взаимодействуют в организме. Можно ли использовать эти белки для обнаружения мельчайших следов таких веществ в воздухе, а затем, используя некие хитроумные химические реакции, например проявляющиеся в виде люминесценции, сообщить окружающим, что они находятся в опасной зоне?
Адреналиновые рецепторы нельзя получить в большом количестве, однако никотинового холинорецептора с медиатором ацетилхолином было выделено столько, что он мог бы стать подходящим объектом. Это мои гости и хотели услышать. Ацетилхолин осуществляет передачу нервных сигналов к мышцам, включая диафрагму – мышцу, управляющую нашим дыханием. Такие нервно-паралитические вещества, как табун, зоман или зарин, приводят к смерти, блокируя действие важнейшего фермента ацетилхолинэстеразы, которая расщепляет и выводит ацетилхолин. Эти яды парализуют диафрагму и в результате жертва задыхается.
Поскольку ацетилхолин также действует на ряд участков мозга, ацетилхолиновый рецептор представляет интерес и для фундаментальной науки. Никотин активирует один из участков этого рецептора на нервных окончаниях, увеличивая утилизацию другой сигнальной молекулы – дофамина, который, в свою очередь, играет определенную роль в том, что неврологи называют «путь к справедливому вознаграждению» (путь – цель), вызывая тягу к курению у курильщиков.
Ацетилхолиновый рецептор был успешно выделен и очищен Джоном Линдстромом, работавшим в то время в Институте биологических исследований Солка в Сан-Диего. Джон с удовольствием бы предоставил мне этот белок за внушительную сумму, которую я посчитал вполне разумной, учитывая титанические усилия по его выделению, и получил бы от Министерства обороны деньги для своих исследований, а я бы придумал, как помочь правительству обнаруживать нервно-паралитические вещества.
Но бюрократический мозг правительства – это не единая, хорошо отлаженная машина. Чиновники НИЗ существенно затруднили получение денег от Министерства обороны. Обычно ученые не приносят государственные деньги в государственный НИЗ. Напротив, предполагается, что они их расходуют. В конце концов 250 тысяч государственных долларов поступили на специальный счет, открытый в институте на мое имя, но мне сделали предупреждение, что я слишком уж предприимчив, и у меня нет никакой необходимости добывать дополнительные средства.
Подготовив лабораторное оборудование, мы сразу же приступили к выделению и клонированию адреналиновых рецепторов из человеческого мозга для установления их молекулярной структуры и изучения загадочных процессов с их участием. В данном случае клонирование означает копирование гена, который вводится в лабораторный штамм кишечной палочки E. coli. При размножении этих бактерий происходит и размножение копий гена – объектов наших исследований. В сущности клонирование гена также означает обнаружение его в клетках и/или в геноме и последующее определение строения гена, который и создает белок – в данном случае рецептор, отвечающий на выброс адреналина. Для этого нужно выделить рецепторный белок, определить последовательность его аминокислот, а затем выявить возможные коды в молекуле ДНК, определяющие эту последовательность.
На словах все выглядит несложно, но на это ушло десять лет изнурительного труда! Благодаря усилиям моим и моих сотрудников, та же самая работа сейчас занимает всего несколько дней. Но вернемся в 1980-е годы, к тяжелой и кропотливой работе по выделению и изучению редких белков, образующихся в организме человека. Для выделения количеств рецепторного белка, необходимых для определения гена, я хотел использовать недавно разработанный тогда метод высокоэффективной жидкостной хроматографии (ВЭЖХ). Этот метод заключается в том, что компоненты мембраны клеток человека (в данном случае) помещают в раствор детергента для разложения липидов, а затем раствор с выделенными из мембраны белками пропускают через колонки с насадкой. Скорость прохождения белка по колонке зависит от его размера или заряда, при этом молекулы небольшого размера проходят быстрее, чем более крупные.
Для использования этой новой методики нужны были опытные специалисты. Я пригласил на работу Энтони Керлаваджа, который вместе со Сьюзен Тейлор из Калифорнийского университета в Сан-Диего занимался очисткой белков методом ВЭЖХ. А для дальнейшего совершенствования методов изучения белков я сформировал команду молодых специалистов, в которую вошел постдок из Северной Каролины Фу-Зон Чунг и два лаборанта из Буффало – Жанин Гокейн и Майкл Фитцджеральд.
За время освоения процессов очищения рецепторов мы опубликовали тридцать научных работ по различным аспектам изучения структуры и функции рецепторов. В итоге мы сделали важный вывод: природа очень неизобретательна при конструировании рецепторов и все время использует одни и те же модели, разве что с незначительными изменениями. Анализ структуры мускариновых ацетилхолиновых рецепторов (подтип ацетилхолиновых рецепторов) и альфа-адренергических рецепторов (тип адреналинового рецептора) показал значительное сходство структур, несмотря на то, что рецепторы распознают совершенно разные нейромедиаторы в организме. Этот вывод оказался весьма неожиданным, поскольку ранее в молекулярной биологии различные рецепторы рассматривались как существенно отличающиеся объекты, поэтому многие исследователи пренебрежительно отнеслись к нашим данным, и лишь недавно, когда гены рецепторов были секвенированы, их значительное сходство стало очевидным.
За два года мы добились значительных успехов, но в тот момент, когда цель была близка и мы начали секвенировать аминокислоты, выделив и очистив крайне небольшое количество рецепторов, конкуренты нанесли по нам сокрушительный удар. Нас опередила группа ученых из Дьюкского университета под руководством Роберта Лефковича, они даже получили за это премию. Работая вместе со специалистами фармацевтической компании Merck, они приложили большие усилия для очищения и клонирования рецепторов адреналина из красных кровяных телец клеток индюшек. Триумф Лефковича взволновал всех ученых, работавших в этой области. Ну и меня, разумеется. Я собрал своих сотрудников и напомнил им, что это только начало, и главные открытия впереди.
Для дальнейших исследований мы решили воспользоваться способом, с помощью которого соединяются попарно комплементарные основания в генетическом коде – каждая половина двойной спирали. Еще в 1953 году Уотсон и Крик догадались, как отдельные цепочки ДНК копируются в комплементарную цепь при объединении оснований в пары. Это одновременно объясняет, как при делении клетки копируются ДНК в хромосомах. Изучив все четыре азотистых основания генетического алфавита, они обнаружили, что А всегда объединяется в пару с G, а C с Т. После разделения двойной спирали на две дочерние комплементарные к ним цепочки образуются по этим правилам. И если создать одну цепочку оснований, то по тем же правилам она соединится только с комплементарной цепочкой. По сути мы создаем ДНК-зонд, который крепится только к определенному гену на огромном геноме человека.
Мы могли бы использовать этот способ комплементарного соединения оснований, применив два подхода к определению генетического кода адреналинового рецептора. Во-первых, использовать небольшую часть последовательности белкового рецептора, полученную нами для расшифровки соответствующей последовательности ДНК, в качестве зонда для поиска определенных генов в геноме человека. Во-вторых, воспользоваться наследием эволюции: гены адреналинового рецептора индюшки и человека, скорее всего, должны быть довольно схожими. Другими словами, мы могли бы сделать ДНК-зонды из самого гена индюшки, – если они свяжутся с комплементарными ДНК человека, они выявят эквивалентный ген человека. Помещая радиоактивную метку на разные виды зондов, мы таким образом установили бы место присоединения каждого из меченых зондов.
Но, как обычно, возникли проблемы. Нужно было получить геном человека в форме, пригодной для этих экспериментов. Даже в виде хромосом, то есть в том виде, в котором он находится в клетках, размер этого кода слишком велик для исследований. Для успешной «охоты на гены» необходимо разделить генетический код человека на пригодные для работы участки. Если взять полный набор ДНК в клетке человека и разделить его на части, то в итоге получится то, что ученые называют «библиотекой». Существуют два основных типа библиотек ДНК – геномные и клоновые.
Геномная библиотека ДНК создается с помощью специальных ферментов, называемых рестриктазами, которые разрезают хромосомы человека на мелкие кусочки, каждый из них состоит примерно из 15–20 тысяч пар оснований ДНК. Чтобы изучать эти части ДНК человека, нужно уметь их копировать и хранить, точно так же, как книги – печатать и переплетать. В процессе копирования каждый фрагмент ДНК человека прикрепляется к ДНК бактериофага – вирусу, который инфицирует бактерии и размножается внутри них. Такой обработанный бактериофаг, несущий в себе ДНК человека, используют для инфицирования бактерии кишечной палочки E. coli. Если налить в чашку Петри бульон с инфицированной кишечной палочкой E. coli, то на бактериальном газоне появятся стерильные пятна – там, где вирусы убили E. coli. Эти пятна, бляшки, содержат миллионы вирусных частиц – и следовательно, миллионы копий фрагментов ДНК человека.
Клоновые библиотеки ДНК составляют на основе другого генетического материала в клетках – матричной (информационной) РНК, переносящей геномную информацию для сборки белка. Только 3 % нашего генетического кода отвечает за кодирование белков, поэтому мы получаем гораздо более компактный «рабочий чертеж» ДНК человека, если сосредоточим внимание на РНК, кодирующую эти белки. (Типичный ген может содержать миллион пар оснований, а длина «отредактированной» РНК может доходить всего лишь до тысячи пар оснований.) Другими словами, такая библиотека ДНК использует тот же способ, с помощью которого природный «издатель» превращает весь генетический код в гораздо меньшие матричные РНК – лишь субпопуляции генов, необходимых для создания специфичных клеток или тканей.
По своей природе матричная РНК недолговечная и нестабильная молекула, в противном случае мы бы просто выделили ее из клетки и прочитали. Однако с помощью фермента «обратная транскриптаза» РНК нетрудно скопировать в стабильную молекулу ДНК. Это называется комплементарной ДНК или кДНК. Выделяя РНК человека для изготовления кДНК, мы получаем сжатый, легко читаемый вариант генома с кодирующими белок генами.
Как и в геномной библиотеке, каждый том комплементарной библиотеки должен быть представлен в удобном для обработки и копирования виде. Природа решила и эту проблему. Комплементарные библиотеки ДНК получают путем выделения матричных РНК в тканях, преобразуют эти РНК в комплементарные фрагменты ДНК и встраивают их в плазмиды, небольшие кольцевые молекулы ДНК с инструкциями для бактерии. Бактерии кишечной палочки E. coli, инфицированные этой кДНК, играют роль «печатного станка» книг для этой библиотеки. Каждая бактерия содержит соответствующий сегмент кДНК человека, и когда бактерия реплицируется (делится на дочерние клетки), то и материнские, и дочерние клетки получают одинаковые фрагменты гена человека.
Эти фрагменты ДНК невидимы для невооруженного глаза, но их легко разглядеть с помощью специальных приборов. На дно чашки Петри наносят очень тонким слоем, чтобы по возможности избежать соприкосновения колоний бактерий, бульон с E. coli, содержащими кДНК человека. Отдельные колонии бактерий начинают расти, и когда они в итоге становятся различимы глазом в виде пятен, в каждой из них оказываются миллионы идентичных бактериальных клеток (клонов), и в каждой из этих клеток находится одинаковая часть кДНК человека. В небольшой чашке Петри можно получить десятки и сотни тысяч таких изолированных колоний и создать обширную библиотеку ДНК человека.
С помощью любой из таких библиотек мы начинаем охоту на рецептор, используя способ крепления комплементарных ДНК. Фильтровальной бумагой удаляем ДНК из чашек Петри с E. coli, вырастившей геномную или комплементарную библиотеку ДНК. Фильтровальную бумагу затем замачиваем на ночь в растворе рецепторного ДНК-зонда. Чтобы определить, связан ли он с комплементарной ДНК в библиотеке, зонд метят радиоактивным изотопом фосфора Р-32, заменяя им некоторые атомы фосфора в молекуле ДНК. Затем фильтры промывают, чтобы удалить все следы радиоактивного зонда, которые не присоединились ни к одному из фрагментов ДНК, сушат и помещают на несколько дней в кассету с рентгеновскими пленками. Положительные колонии и бляшки – области, где радиоактивный зонд прикрепился к целевой ДНК-мишени, видны на проявленной рентгеновской пленке как черные пятна. Сравнивая пятна на пленке с пятнами в чашке Петри, положительные колонии или бляшки можно идентифицировать, а затем выделить и амплифицировать их ДНК.
Заметим, что найти нестабильную матричную РНК, кодирующую определенные белки, не так-то просто. В каждой клетке есть всего несколько тысяч молекул трудно выделяемых мембранных белков, например адреналиновых рецепторов. Как следствие, невелико также и количество матричной РНК, кодирующей рецепторный белок. Используя генетический материал мозга человека, полученный для медицинских исследований, нам приходилось изучать более миллиона колоний кДНК, чтобы найти именно ту, которая содержала матрицу для создания адреналинового рецептора. Мы вырастили колонию для производства достаточного количества такой ДНК и с ее помощью сумели ее секвенировать – определить порядок расположения четырех нуклеотидов (C, G, A и T), формирующих звенья в молекуле ДНК с внешним остовом из сахара и фосфата. Порядок расположения пар оснований в ДНК определяют с помощью двух основных методов секвенирования. Один из них был разработан в Лаборатории молекулярной биологии Совета по медицинским исследованиям в Кембридже Фредериком Сенгером, блестящим ученым, (кстати, разделяющим мою любовь к парусному спорту){15}, который однажды сказал, что «у него все в порядке с головой, но не очень хорошо с болтовней». Второй был описан гарвардским ученым Уолли Гилбертом, известным как «серый кардинал с грандиозными замыслами». В 1980 году Гилберт и Сенгер получили Нобелевскую премию. Большинство экспериментов по секвенированию, проведенных в последние десятилетия, являются прямым продолжением именно метода Сенгера, которому удалось разрешить некоторые сложнейшие проблемы биологии. В мае 1975 года Сенгер потряс научный мир, частично секвенировав ДНК, а затем впервые полностью секвенировав геном вируса: 5375 пар оснований генетического кода бактериофага phi-X174. Позднее Сенгер секвенировал приблизительно 17 тысяч (или около того) пар оснований ДНК митохондрий человека (энергетических фабрик наших клеток), положив начало первому проекту по расшифровке генома человека.
Метод расшифровки ДНК, впервые предложенный в Кембридже Сенгером совместно с Аланом Коулсоном, состоит в создании многочисленных копий молекул ДНК с использованием фермента ДНК-полимеразы. Для репликации ДНК этой полимеразой ее помещают в раствор из нуклеотидов – строительных блоков ДНК. Фермент считывает информацию с каждого конца первичной нити ДНК, используя нуклеотиды для создания новых копий. Вклад Сенгера состоял в добавлении в этот раствор дополнительного ингредиента – «нуклеотидов-терминаторов», помеченных радиоактивным P-32. Эти нуклеотиды присоединяются к растущей копии и случайным образом прекращают действие полимеразы, помечая конец растущей цепи радиоактивной меткой. Поскольку это может происходить на любой стадии образования в пробирке множества копий молекул ДНК, в результате образуется смесь фрагментов ДНК различной длины, каждый из которых оканчивается радиоактивно помеченными C, G, А или T, – смотря по тому, какое основание помечено P-32.
Затем фрагменты пропускают через слой геля, на котором молекулы ДНК под действием электрического поля разделяются в зависимости от размера. Теперь можно прочитать последовательность, поскольку более крупным фрагментам ДНК требуется больше времени для прохождения через гель. Поскольку метки на всех четырех нуклеотидах – C, G, A, T – одинаковы и оставляют одинаковый след в виде черных полосок на рентгеновской пленке, необходимо проводить четыре отдельных эксперимента, по одному на каждую букву кода. После использования ДНК-полимеразы для каждого из четырех нуклеотидов-терминаторов (в одной серии опытов помечены все C, в другой – все G, и так далее), их помещают на четыре соседние дорожки на том же самом геле. Когда фрагменты разделяются, одна дорожка демонстрирует фрагменты ДНК, оканчивающиеся на С, другая – оканчивающиеся на G, и так далее.
Гель высушивают, выдерживают несколько дней на рентгеновской пленке, оставляя четыре параллельные дорожки с черными полосками, потом внимательно изучают пленку, начиная с первой из четырех дорожек. Так и получают искомую последовательность, записывая по порядку каждую следующую букву сотни раз для каждого образца. Это трудоемкий и длительный процесс, в течение которого могут происходить – и происходят – всяческие сбои. Если одна из четырех реакций на геле не получилась, весь эксперимент идет насмарку; нередко случается, что дорожки располагаются не параллельно друг другу. Это затрудняет сравнивание черных меток и пробелов на каждой из дорожек и считывание всей последовательности. При высыхании гель может растрескаться, и часто именно так и происходит. Реагенты могут разлагаться, и это тоже часто у нас случалось…
Меня очень раздражала возможность различной интерпретации результатов – я часто видел, как выводы делались не столько на основании полученных данных, сколько в силу авторитета или в интересах какого-нибудь ученого. Я же хотел получить истинные данные, основанные на эксперименте. Последовательность либо есть, либо ее нет. Она либо точна, в пределах погрешностей метода, либо нет – как правило, в результате неряшливости опыта.
После многих недель напряженной работы мы смогли получить клон кДНК для адреналинового рецептора мозга человека. Наше возбуждение достигло предела, когда мы поняли, что эта последовательность значительно отличается от последовательности рецептора индюшки. Мы почувствовали себя на пороге первого большого успеха.
Но как только мы определили последние участки последовательности, стало ясно, что работу мы не закончили: нам недоставало начального участка, то есть точки, на которой у ДНК обычно расположен генетический эквивалент знака препинания. Как уже упоминалось, только небольшой процент нашей ДНК представляет собой гены, кодирующие белки. Чтобы помочь молекулярному механизму клетки их различать, существуют генетические эквиваленты прописных букв и точек.
В любом тексте предложение начинается с заглавной буквы. Так и у большинства генов начало кодирующей белок области ДНК начинается так называемым стартовым кодоном ATG (кодирующим аминокислоту метионин). И точно так же, как заглавные буквы часто встречаются и в середине предложения, в середине гена может появиться кодон метионина. Поэтому необходима дополнительная информация – действительно ли ATG отмечает истинное начало гена. Можно, например, поискать ближайший стопкодон, одну из молекулярных «точек» на концах «предложений» ДНК, которые указывают молекулярному механизму на прекращение синтеза белка.
Поскольку у нас имелся только один сегмент ДНК из библиотеки ДНК мозга, соответствующей адреналиновому рецептору, для определения остальной части гена нам нужна была другая библиотека. Единственным выходом было изготовить из последовательности вблизи недостающего участка радиоактивный зонд и с его помощью найти во второй библиотеке участок с недостающим концом гена.
Наши попытки опять были похожи на поиски иголки в стоге сена, хотя на этот раз количество изучаемых ДНК было меньше. Во второй геномной библиотеке ДНК длина фрагментов в среднем составляла 18 тысяч пар оснований, и каждый из этих фрагментов (клонов) представлял лишь 0,0006 % из 3 миллиардов букв генома. Вместо поиска одного клона среди миллионов мы искали один из приблизительно 167 тысяч клонов. Через пару недель у нас появилось несколько перспективных версий. У одного клона длиной в 18 тысяч букв явно обнаруживался конец гена, поэтому мы приступили к его секвенированию.
План сработал. Наконец-то мы собрали всю последовательность генов с помощью компьютера и написали первую в моей жизни статью по молекулярной биологии{16}. Мы послали ее в FEBS Letters (журнал Федерации европейских биохимических обществ) – я был знаком с его редактором Джорджио Семенца, и он обещал ее быстро опубликовать. Вскоре нам удалось получить последовательность первого гена адреналинового нейротрансмиттерного рецептора мозга человека. Мы прекрасно понимали, что впереди у нас еще много работы – начиная с очистки рецепторных белков до разработки методики считывания кода, но чувствовали, что сделали нечто очень важное.
Увидеть своими глазами последовательность ДНК, которая до сих пор существовала лишь в воображении, было поразительно, – вроде как выйти на яркий солнечный свет из пещерной темноты. Даже сегодня мне кажется невероятным увидеть молекулярные коды с помощью столь несложной технологии. Та статья стала поворотным пунктом в моей карьере: вместе с командой единомышленников я вступил в новую область науки – молекулярную биологию. И мы были готовы совершить новый рывок.
Я понимал, что определение последовательности гена или белка – только первый шаг к пониманию того, как работает адреналин. Завершение этого этапа означало всего лишь начало следующих. Например, можно было внедрить ген рецептора человека в клетки мышей, культивировать их, начать массовое производство рецепторов и использовать их в самых различных экспериментах. Следовало получить намного больше последовательностей для продолжения работы над нашим открытием – ведь мы поняли, что различные рецепторы нейротрансмиттеров взаимодействуют с одним и тем же антителом. Чтобы подтвердить наше предположение об их общем эволюционном происхождении, нужно было сравнить последовательности большого числа рецепторов. Попытки прочитать ДНК нескольких рецепторных генов оказались первым, пусть и неосознанным, шагом в новую, тогда еще не существовавшую область науки – геномику.
Кардинальному повороту в моих исследованиях способствовала вышедшая в Nature статья группы ученых Калифорнийского технологического института (Калтех) под руководством Ли Гуда о замечательных возможностях новой технологии секвенирования ДНК. Четыре различные реакции секвенирования по Сенгеру проводились в одной дорожке на секвенирующем геле с помощью четырех различных флуоресцентных красителей. Двигаясь к нижней части геля, фрагмент ДНК попадал под лазерный луч, активирующий краситель. Светящиеся красители легко обнаружить с помощью фотоусилительной трубки и передать данные на компьютер. Появление четырех цветов, соответствующих четырем нуклеотидам, означало непосредственное прочтение генетического кода.
Раньше я уже работал с Ли Гудом и его постдоком Майклом Ханкапиллером над рецепторными белками, и теперь решил снова к ним обратиться. Потратив почти год на секвенирование методом радиоактивных меток, причем с весьма скудными результатами, я сразу оценил все преимущества технологии Калтеха, связался с авторами статьи и узнал, что Ханкапиллер вскоре возглавит работу по разработке промышленного секвенирования ДНК. Он перешел на работу в биотехнологическую компанию Applied Bio systems (ABI). Я поговорил с Ханкапиллером и местным представителем ABI с предложением купить одно из их первых устройств. Мое предложение заинтересовало ABI, поскольку сам факт приобретения НИЗ этих приборов именно у ABI мог бы поднять престиж компании и сделать рекламу их технологии. После долгих переговоров все было согласовано, и моя лаборатория готовилась стать полигоном для испытания нового метода секвенирования. Дело было только за суммой в 110 тысяч долларов, чтобы заплатить за секвенатор. Однако завотделом фундаментальных исследований НИЗ Эрнст Фриз был против покупки неапробированной технологии, и вместо этого предложил мне 250 тысяч долларов на покупку секвенатора белка.
Мы с Фризом поспорили о сравнительных достоинствах секвенирования белка и секвенирования ДНК, и я проиграл. Я был в полном отчаянии, но через несколько дней вспомнил про специальный счет на 250 тысяч долларов от Министерства обороны для идентификации химического оружия и заявил Фризу о своей решимости опробовать новое устройство, воспользовавшись этими деньгами. Моя решительность произвела на него впечатление, и заказ на секвенатор был отправлен в ABI.
И в феврале 1987 года новое устройство для секвенирования ДНК доставили по адресу «НИЗ, корпус 36». В этом контейнере находилось мое будущее. Я носился с этим прибором, как с ребенком. В лаборатории было мало места, и я велел поставить секвенатор в свой кабинет. Моей сотруднице Жанин Гокейн не хватало уверенности в собственных силах, но я верил в ее способности и попросил помочь запустить новый прибор.
Самой важной его частью была электрофорезная камера с вертикальным гелем для секвенирования, размером с блокнот. В геле было 16 дорожек для одновременного запуска 16 образцов. (Требовалось еще прогнать 4 стандарта, чтобы убедиться в правильном функционировании устройства, оно могло справиться лишь с дюжиной образцов.) В нижней части геля находился сканер, который двигался взад-вперед, передавая сигналы от флуоресцентных красителей в компьютер. Один проход занимал 16 часов и выдавал данные, на получение которых старым методом ушла бы неделя.
Потратив еще несколько недель на исправление технических неполадок, мы начали получать прекрасные результаты, до двух сотен пар оснований генетического кода с каждого образца ДНК. Проблема состояла лишь в том, что программное обеспечение прибора было примитивным и ненадежным. Позднее наши программисты потратили немало времени на усовершенствование компьютера.
На ключевом этапе процесса секвенирования мы использовали ДНК-полимеразу. Это фермент, который копирует ДНК с помощью небольшого фрагмента ДНК – праймера для секвенирования. Чтобы понять, как работают полимераза и праймер, представим процесс ремонта поврежденных железнодорожных путей, где на определенном участке удален один рельс. Железнодорожные пути – это двойная спираль ДНК, а ремонтная бригада – ДНК-полимераза, и вот она начинает укладывать новые пути с того места, где было два нетронутых рельса. ДНК-полимеразу можно обмануть и заставить начать с определенной точки на ДНК с помощью короткого кусочка синтетической ДНК (праймера), который связывается с определенными основаниями для создания короткого отрезка двойной спирали ДНК.
Еще будучи стажером, я научился у Ната Каплана проверять чистоту и количество реагентов, не доверяя гарантиям поставщиков. Запуская прибор, я каждый раз измерял количество ДНК и секвенирующего праймера, чтобы получить правильное соотношение между реагентами и продуктами химической реакции. Такое внимание к деталям оказалось чрезвычайно важным: представители ABI заявили, что до нас никто так не интерпретировал результаты секвенирования, да и вообще не получал приличные данные. Большинство их клиентов были настолько разочарованы, что вернули секвенаторы ABI. А мы достигли существенного успеха с помощью этого устройства и сумели использовать его для секвенирования двух рецепторных генов из сердца крысы – генов бета-адренергетического рецептора, изменяющего активность сердцебиения в ответ на введение адреналина, и мускаринового рецептора, который замедляет частоту сердечных сокращений под влиянием блуждающего нерва. Мы быстро секвенировали оба гена, а для сравнения выполнили секвенирование некоторого количества генов вручную методом Сенгера. Осенью 1987 года мы опубликовали результаты нашей работы в PNAS, и они стали первыми данными, полученными методом автоматизированного секвенирования ДНК – тем самым методом, о котором я прочитал в журнале Nature всего год назад{17}. Направление моих исследований изменилось бесповоротно и навсегда.
После клонирования, секвенирования и выделения адреналинового рецептора мы приступили к определению его структуры и функций методами молекулярной биологии. Каким образом он распознает адреналин? Что происходит после связывания рецептора с адреналином? Что на самом деле делает молекула рецептора? Что контролирует синтез и распад рецептора? Какова молекулярная структура рецептора в мембранах наших клеток?
Основой решения этих задач стало установление трехмерной структуры рецепторного белка в клеточной мембране. Пространственная структура белка не однозначно определяется последовательностью ДНК, и установление этой структуры остается одной из великих задач биологии. Очень важно выяснить, как одна из огромного числа молекул, беспорядочно перемещающихся в наших клетках, приобретает правильную форму и правильный заряд для присоединения к рецептору и вызывает жизненно важные реакции – например, учащение сокращений сердца или замедление роста клеток.
Все занимавшиеся исследованием структуры молекулы адреналинового рецептора непременно отмечали ее ключевую особенность: наличие 7 участков аминокислот, согласно компьютерному моделированию, располагающихся в форме штопора или альфа-спирали. Эти спирали чаще всего встроены в липидные мембраны клеток. Напомним, что рецепторные молекулы являются основным средством связи между внешней поверхностью клетки и ее содержимым, – это много лет назад показали мои эксперименты со стеклянными бусинами. Адреналиновый рецептор встроен в мембрану так, что эти семь «пальцев» образуют нечто вроде кармана для захвата адреналина и таким образом изменяют остальную часть молекулы рецептора, «объявляя» о появлении химического мессенджера. Среда вне липидной мембраны представляет собой водный раствор, поэтому мы полагали, что соединенные с адреналином аминокислоты рецептора должны быть гидрофильными, а также отрицательно заряженными, так как часть молекулы адреналина несет положительный заряд. И мы действительно нашли несколько аминокислот с такими свойствами. Другие аминокислоты последовательности рецепторного белка, например пролин, обычно играют важную роль в построении его структуры, образуя своеобразные изгибы.
К тому времени нам удалось выяснить, что происходит при изменении конфигурации рецепторного белка. Один из методов молекулярной биологии, так называемый «сайт-направленный мутагенез», или «белковая инженерия», позволил нам провести некоторые хитроумные эксперименты. Изменяя код гена рецептора, можно изменить последовательность аминокислот, то есть саму структуру белка. Поэтому мы могли бы проанализировать работу этой некогда неуловимой молекулы, если бы выяснили, как работает измененный рецепторный белок – например, по-прежнему ли он связан с адреналином и «нравится» ли другим препаратам с ним связываться? И если да, то действует ли рецептор так же, как при взаимодействии с адреналином?
Должен признаться, что в душе я – старомодный биохимик. Мне нравится думать не только о мутациях, которые изменяют структуру белков, но и о том, как эти изменения отражаются на биологическом поведении организма. Очень многие генетики довольствуются лишь тем, что обнаруживают связь между кусочком ДНК и каким-то признаком. Для меня это похоже на впечатление от встречи с кем-то, лично знакомым с иной знаменитостью: «У меня есть друг, который знаком с Мадонной!». Мне этого мало. Я хочу знать гораздо больше, и не только о Мадонне. Я хочу понять, что это за биологический рецептор, который вдохновляет ту же Мадонну? И всех остальных людей, если уж на то пошло!
В результате мы изменили десятки аминокислот в рецепторных белках, и в 1988 году опубликовали две важные статьи об аминокислотах, влияющих на способ связи и активирования рецептора молекулами адреналина. Но, на удивление, эти молекулы не оказывали никакого влияния на бета-блокаторы типа пропранолола, которые также связывались с рецепторами. Из этих экспериментальных данных был сделан единственный вывод – точки на рецепторном белке, связывающиеся с активаторами вроде адреналина (так называемых «агонистов»), отличаются от точек на рецепторных белках, связывающихся с их блокаторами вроде пропранолола (так называемых «антагонистов»). Наше упрощенное представление о работе рецепторов теперь следовало пересмотреть. Всегда считалось, что гормоны работают по принципу «ключ к замку», где замок – рецептор, а антагонисты – просто неподходящие к нему ключи. Теперь оказывалось, что они могут действовать на какую-то другую деталь замка, но так, что замок все равно не срабатывает.
Выдвигать подобные гипотезы было бы гораздо легче, если бы мы имели модель адреналинового рецептора. Я вспомнил, как в начале моей работы в лаборатории Каплана его сотрудница Сьюзен Тейлор определила трехмерную структуру фермента лактатдегидрогеназы на основе данных рентгеновской кристаллографии. Затем была создана модель белка (1,2 метра в длину, в ширину и в высоту), которая наглядно показывала, как в клетках растений и животных этот фермент катализирует взаимные биохимические превращения пирувата и лактата в основном метаболизме. Я хотел сделать подобную модель адреналинового рецептора. Но чтобы «сфотографировать» рецепторный белок, он нужен в кристаллической форме, а для этого требуются его граммовые количества – примерно в миллион раз больше, чем мы в то время располагали. Изучив литературу, я обнаружил, что для массового производства белков успешно используются дрожжи, и нанял химика Дика Маккомби, чтобы он получил нужное для рентгеновской съемки количество белка.
Примерно в то же самое время бурно обсуждался проект, благодаря которому мои исследования в один прекрасный день оказались в центре внимания научной общественности. Я говорю о секвенировании генома человека. Одну из первых дискуссий в мае 1985 года на семинаре в Калифорнийском университете в Санта-Крус организовал Роберт Синсхаймер. Он надеялся, что такой важный проект привлечет внимание к его университету. Когда я уже начал работать в этой области, лауреат Нобелевской премии американец Ренато Дульбекко выступил в журнале Science с предложением секвенировать геном человека для борьбы с раком, а Сидни Бреннер из британского Совета медицинских исследований настоятельно призвал Европейский союз принять единую программу исследований. Дискуссии по геному человека также проводились по инициативе Чарлза Делизи, профессора биоинформатики из Министерства энергетики США. Участие в этом проекте Министерства энергетики может показаться несколько странным, но дело в том, что именно этому ведомству поручили оценить влияние радиации на генетический код хибакуся – японцев, переживших атомную бомбардировку Хиросимы и Нагасаки.
Большинство из обсуждавших тогда идею расшифровки генома человека были настроены крайне скептически, считая это абсолютно безнадежным делом. Высказывались против проекта и в НИЗ. Его директор Джеймс Вингаарден язвительно заметил, что «план Министерства энергетики очень похож на предложение Национального бюро стандартов построить бомбардировщик Б-2»{18}. Даже Бреннер шутил, что задача столь грандиозна, а технические возможности столь ограничены, что секвенирование следует приравнять к уголовному наказанию – скажем, определение 12 миллионов оснований считать бытовым преступлением. А у меня появилась идея создать базу данных последовательности всех генов человека. При этом я почти десяток лет пытался декодировать всего лишь один из приблизительно 100 тысяч предполагаемых на тот момент генов человека! Но я был готов посвятить такой грандиозной задаче пару десятилетий, если за это время удастся расшифровать весь геном. Конечно, глупо использовать традиционный метод Сенгера с его радиоактивными маркерами, трескающимися гелями и бесконечными разочарованиями, а вот применить новые, автоматизированные технологии – совсем другое дело.
Но как включиться в этот проект? Хорошо бы расширить лабораторию, но помещений в НИЗ недоставало. После разговора с Эрнстом Фризом (который благодаря моим успехам к этому времени стал активным сторонником секвенирования) и Ирвином Копином, директором программ Национального института неврологических расстройств и инсульта (NINDS), мне предложили место в Парклейнбилдинг в Роквилле, напротив Агентства по контролю за качеством пищевых продуктов и лекарств (FDA). Переезд в Роквилл обеспечил бы мне четырех-пятикратное расширение программы работ и увеличение моей команды вдвое, до двадцати и более исследователей.
Однако принять решение было не так просто. Не хотелось покидать кампус – находиться здесь считалось весьма престижным, и многие мои коллеги сражались не на жизнь, а на смерть за место в корпусе № 36. И тут мне сделали еще два весьма соблазнительных предложения: во-первых, мои административные обязанности в Парклейне будут значительно сокращены, а во-вторых, я войду в комитет по планированию строительства нового здания корпуса № 49 на основной территории кампуса, куда и переедет моя группа по завершении строительных работ. Я согласился, и в августе 1987 года мы переехали в Парклейн.
В то время многие с недоверием относились к идее использования секвенаторов ABI для осуществления столь широкомасштабного проекта, как расшифровка генома человека. Японцы, предложив альтернативный метод, в 1987 году попали на первые страницы газет, когда заявили, что собираются сконструировать устройство для секвенирования миллиона пар оснований в сутки (потом обещанное количество сократилось до 10 тысяч оснований). А для меня решение этой проблемы не представляло никакого труда. Если у вас есть одна швейная машинка, а вы хотите удвоить выход продукции, вы берете еще одну машинку. Для удвоения количества определяемых последовательностей ДНК нам просто нужен был еще один секвенатор. Все дело решала одновременная обработка данных. Я мог бы конкурировать с японцами, купив еще несколько приборов фирмы ABI.
И я заговорил с Фризом о дополнительных 750 тысячах долларов к моему годовому бюджету. Опасаясь, что руководители других лабораторий не одобрят, мягко говоря, его непропорционально большой размер, Фриз переименовал часть моей лаборатории в Центр секвенирования ДНК при NINDS. И мне позволили получить приборы – при условии, что я буду помогать коллегам секвенировать участки ДНК для их исследований. Я согласился, поскольку знал, что в NINDS почти нет молекулярных биологов и в нашей помощи особой необходимости не будет. Итак, я купил еще три секвенатора, и моя лаборатория стала крупнейшим центром секвенирования ДНК в мире.
Хотя мне не терпелось немедленно начать работу, очень скоро стало ясно, что у нас нет методики эффективного и экономичного секвенирования. Нужно было выработать стратегию наиболее разумного использования приборов.
Данный текст является ознакомительным фрагментом.