Глава 8 Падение витализма
Глава 8 Падение витализма
Азот и питание
От весьма простых начал жизнь постепенно, под давлением окружающей среды, становилась все более сложной и одновременно вырабатывала эффективные способы продолжаться. В своем бесконечном разнообразии неживая природа не могла соперничать с изощренностью живых форм. Да, поднимались все новые горы, однако такие уже бывали ранее, а живые формы каждый раз возникали неповторимыми.
Дарвинизм, таким образом, благоприятствовал витализму: в воображении людском между живым и неживым вырос немалый барьер. И действительно, во второй половине XIX в. витализм вновь стал популярен.
Однако наибольшая опасность поджидала витализм в среде химиков-органиков. Против него была на щите поднята модель молекулы протеина — и обсуждение ее поглотило химиков вплоть до конца века.
Первым заговорил о важности протеина для жизни французский физиолог Франсуа Мажанди (1783—1855). Экономические дислокации, привнесенные наполеоновскими войнами, привели к массовому голоду во многих странах, и положение беднейших слоев стало ухудшаться. Правительства забили тревогу; во Франции была создана специальная комиссия; во главе ее встал Мажанди. Целью комиссии была разработка технологии производства пищи из дешевых компонентов вроде желатина.
В 1816 г. Мажанди в опытах по кормлению собак беспротеиновой пищей, содержащей сахар, оливковое масло и воду, потерпел неудачу: собаки сдохли с голоду. Одних лишь калорий не хватало для полноценной работы организма. Кроме того, не все протеины равно полезны. К сожалению, и в опытах, где желатин был единственным протеином, собаки погибали также. Так начиналась тогда наука диетология, или изучение состава питания и его связи с жизнью и здоровьем.
Протеины отличаются от гидрокарбонатов и липидов тем, что включают в свой состав азот. По этой причине на азот как на необходимый компонент для живых организмов было обращено пристальное внимание. Французский химик Жан Батист Буссенго (1802 — 1887) начал в 1840-х годах изучать потребности растений в азоте. Он обнаружил, что у некоторых растений, например у овощей (горошка, бобов и прочих), имеется отличительная от других особенность успешно расти на безазотной почве, причем без удобрения азотом. Они не только росли, но и увеличивали содержание азота в своих тканях. Единственное заключение, к которому мог прийти Буссенго, — что эти растения потребляют азот прямо из воздуха. (Теперь нам известно, что не растения сами по себе делают это, но азотфиксирующие бактерии, поселяющиеся в клубеньках корней.)
Вместе с тем Буссенго пошел дальше, чтобы показать, что животные не могут получать азот из воздуха, а получают его с нищей.
Для этого он заострил практические и обоснованные выводы Мажанди, соотнеся содержание азота в некоторых продуктах со скоростью роста подопытных. Взаимосвязь оказалась прямой, при условии, что в качестве источника азота берется одна и та же пища. И все-таки некоторые виды питания были более эффективны, нежели другие, при аналогичном содержании азота. Это означало, что одни протеины более используются организмами, чем другие. Вплоть до конца века причины этого факта были неясны. Однако уже к 1844 г. сам Буссенго эмпирически смог составить шкалу полезности различных продуктов в качестве источника протеина.
Дальнейшую работу осуществил немецкий химик Юстус фон Либих (1805 — 1873), который за последующую декаду лет подготовил обоснованный список полезных продуктов питания. Либих сильно полагался на механистические взгляды, поэтому обосновывал проблему с точки зрения агрохимии. Он считал, что потеря урожайности культур в результате многолетнего использования земель происходит из-за разложения и потребления некоторых минеральных составляющих, необходимых растениям. Растительные ткани содержат небольшое количество натрия, калия, кальция, фосфора, а те, в свою очередь, поступают с растворимыми веществами, которые растения в состоянии поглотить. С незапамятных времен люди увеличивали плодородие почвы, возвращая ей израсходованное питание с пометом животных. Так отчего же не добавить в почву сами минералы, чистые химически и механически, не несущие неприятного запаха, вместо того чтобы вносить навоз?
Он первый начал эксперименты с химическими удобрениями. Поначалу, слишком полагаясь на выводы Буссенго о поглощении растениями азота воздуха, он потерпел неудачу. Когда Либих понял, что большинство растений получают азот от растворимых азотных компонентов почвы (нитратов), он добавил их в удобрения. Как Буссенго, так и Либиха можно считать основателями агрохимии.
Калориметрия
Либих полагал, что гидрокарбонаты и липиды — горючие вещества организма, так же как они бывают горючими, будучи брошены в огонь. Это символизировало продвижение взглядов Лавуазье, выработанных полвека ранее. Лавуазье говорил об углероде и водороде, а сейчас можно было более специфично говорить о гидрокарбонатах и липидах — и те и другие состоят из углерода и водорода (плюс присоединенные радикалы кислорода).
Взгляды Либиха воодушевили других ученых на попытки определить, соответствует ли количество тепла, полученное от такого «топлива», аналогичному, если топливо будет сожжено вне тела, в окружающем пространстве. Со временем методики стали более тонкими, эксперимент усложнялся.
Устройства, которые позволяли бы измерить количество тепла, полученного от сожженных органических компонентов, были разработаны в 1860-х годах. Бертло использовал такое устройство (калориметр) для измерения тепла, произведенного сотнями реакций. В обычном калориметре горючее вещество смешивается с кислородом в закрытой камере и смесь взрывается электрическим взрывателем. Камера окружена водой. Вода поглощает тепло, полученное при взрыве, и в зависимости от повышения температуры воды можно определить количество выделившегося тепла.
Чтобы измерить тепло, производимое организмом, необходимо соорудить настолько большой калориметр, чтобы поместить туда этот организм. Исходя из расхода кислорода, потребляемого организмом, и выхода углекислого газа можно подсчитать количество сожженных гидрокарбонатов и липидов. Можно измерить количество тепла, производимого организмом, по повышению температуры водяного «кожуха». А это количество тепла уже возможно сравнить с тем, которое выделяется при обычном сжигании тех же количеств гидрокарбонатов и липидов в окружающей среде.
Немецкий физиолог Карл фон Войт (1831 — 1908), ученик Либиха, совместно с химиком Максом фон Петтенкофером (1818 — 1901) разработал подобный калориметр. Из сделанных ими измерений явствовало, что у живой ткани нет иного источника энергии, чем тот, что наполняет неживую природу.
Макс Рубнер (1854 — 1932), ученик Войта, не оставил уже никаких сомнений в данном вопросе. Он измерил количество азота в моче и фекалиях и соотнес его с количеством потребляемого азота в пище подопытных. К 1884 г. он доказал, что гидрокарбонаты и липиды — не единственные виды топлива для организма. Молекулы протеина также могут служить топливом после того, как от них отняли азот. В 1894 г. он показал, что количества тепла, выделяемые при поедании пищи и при обычном ее сжигании, практически одинаковы. Закон сохранения энергии выполнялся как для живой, так и для неживой природы — а значит, витализм был разгромлен.
Эти новые изыскания тут же были поставлены на службу медицине. Немецкий физиолог Адольф Магнус-Леви (1865—1955) измерил минимальный выход энергии у человека и обнаружил, что при заболевании щитовидной железы этот выход энергии значительно нарушается. Таким образом, энергетика питания была использована для медицинской диагностики.
Ферментация
Успехи калориметрии в последней половине XIX в. оставили витализму одну лазейку: протеиновая природа — против непротеиновой.
Хотя закон сохранения энергии выполняется как для живых форм жизни, так и для неживых, но неодолимая преграда лежит между методами получения этой энергии.
Вне живого организма сгорание сопровождается выделением большого количества тепла и света. Скорость сгорания велика, и разрушения после него значительны. Сгорание веществ при питании не дает ни света, ни ощутимого тепла. Температура тела остается примерно одинаковой. Процесс сгорания внутри организма идет медленно и под совершенным контролем. Живая материя не требует для процесса внутреннего сгорания ни электротока, ни подвода тепла, ни сильных реагентов.
Разве это не фундаментальная разница?
Либих указывал на ферментацию как на пример: с доисторических времен человек сбраживал фруктовые соки для виноделия и зерно — для пивоварения. Для хлебопечения использовалась закваска. Все эти химические реакции касаются органических веществ. Сахар, крахмал преобразуются в алкоголь, и это напоминает реакции, идущие в живой ткани. Однако ферментация не требует сильных реагентов и катализаторов; она идет при комнатной температуре. Либих утверждал, что ферментация — чисто химический процесс. Он настаивал на том, что тут не затрагивается жизнь как таковая.
Со времен ван Левенгука было известно, что дрожжи состоят из пузырьков. Те не проявляли особых признаков живого, но в 1837 г. Шванн наблюдал почкование этих пузырьков. Поскольку это был явно процесс размножения, то можно было отнести дрожжи к живым организмам. Биологи заговорили о дрожжевых клетках, однако Либих не принял живой природы дрожжей.
Французский химик Луи Пастер (1822 — 1895) в 1856 г. был приглашен для консультации самыми знаменитыми виноделами страны. Миллионы франков бросались на ветер из-за того, что с возрастом вино и пиво делались кислыми. Как решить эту проблему?
Пастер обратился к микроскопу. Он сразу же обнаружил, что при правильном старении пива и вина они содержали крошечные сферические дрожжевые клетки. При прокисании эти клетки удлинялись. Значит, дрожжи бывают двух типов: одни производят алкоголь, другие — сбраживают вино. Осторожное нагревание прокисшего вина убивало дрожжи и останавливало процесс. Если это делалось в нужный момент, напиток был спасен!
Итак, Пастер выяснил, что, во-первых, дрожжевые клетки — живые клетки, а во-вторых, только живые, а не мертвые дрожжи могут вызывать ферментацию.
Противоречие между Либихом и Пастером разрешилось победой Пастера и... витализма. Пастер приступил к своему знаменитому эксперименту по доказательству спонтанного размножения.
В 1860 г. он прокипятил и стерилизовал мясную вырезку и оставил ее в незакрытой колбе на воздухе. Хотя к мясу существовал доступ воздуха, горло колбы было хитро изогнуто в виде буквы «S», поэтому все частицы пыли оседали в изгибе. В таких условиях на мясе не могли поселиться микроорганизмы, но при удалении изгиба горла колбы мясо сей же час протухало. Пастер доказал, что дело не в кипячении, которое убивает жизненное начало, а в недоступности пыли, содержащей микроорганизмы.
В 1850-х годах, в преддверии опыта Пастера, немецкий врач Рудольф Вирхоф при изучении зараженной ткани доказал, что больные клетки происходят от нормальных.
Причем процесс разрушения клеток идет постепенно, без внезапного нарушения структуры и содержимого. Рудольф Вирхоф стал основателем современной науки патологии. Вместе с Пастером они доказали, что, будь то целый организм или часть многоклеточного организма, вначале всегда бывает клетка. С тех пор живое было отделено от неживого неодолимой преградой. Никогда витализм еще так не укреплял свои позиции.
Энзимы
Еще в XVIII в. химики осознали, что иногда реакцию можно ускорить при помощи вещества, которое само по себе в реакции участия не принимает. Наблюдения такого сорта накапливались, пока не привлекли серьезного внимания ученых в XIX в.
Русский химик Константин Готлиб Сигизмунд Кирхгоф (1764-1833) в 1812 г. показал, что если прокипятить крахмал вместе с разведенной кислотой, то он распадется до глюкозы — простого сахара. Этого не случится, если кислота отсутствует, и все же кислота, как таковая, не принимает участия в реакции.
Четырьмя годами позже английский химик Гемфри Дэви (1778-1829) обнаружил, что платиновые провода провоцировали соединение спиртов с кислородом. Сама платина в реакции не участвовала.
Эти и другие примеры привлекли внимание Берцелиуса, который в 1836 г. предложил для таких явлений термин «катализ». Это греческое слово означает «разрушение». Обычно спирт горит в кислороде только после нагревания при высоких температурах, когда возгораются его пары. В присутствии платинового катализатора та же реакция происходит без предварительного нагревания. Можно поспорить, идут ли химические процессы в живой ткани, поскольку именно в живых тканях присутствуют определенные катализаторы, которых нет в неживой природе.
И в самом деле, в 1833 г., незадолго до Берцелиуса, французский химик Ансельм Паузн (1795 — 1871) экстрагировал из проросшего ячменя вещество, которое могло разлагать крахмал до простых Сахаров еще быстрее, чем любая кислота. Он дал веществу наименование диастаз. И диастаз, и другие подобные ему вещества были впоследствии названы ферментами из-за преображения крахмала в сахара: именно этот процесс являет собой ферментизация зерна. Вскоре ферменты были экспериментально получены из животных организмов. Первые из них добывались из желудочных соков. Реамюр показал, что пищеварение — химический процесс, и в 1824 г. английский врач Уильям Прут (1785 — 1850) выделил из желудочного сока соляную кислоту. Она был строго неорганическим веществом. Поначалу это поразило ученых, однако в 1835 г. Шванн, один из основателей клеточной теории, получил экстракт желудочного сока, который не содержал соляной кислоты, но разлагал мясо быстрее, чем кислота. Это вещество Шванн назвал пепсином (от греческого слова, в переводе означающего «переваривать»); это и был истинный фермент. Постепенно были открыты и другие ферменты; стало совершенно очевидным, что ферменты — это и есть катализаторы процессов, идущих в живых тканях; химики не могли ранее синтезировать некоторые вещества, производимые в этих тканях, поскольку не имели в своем арсенале таких катализаторов. Протеины оставались щитом виталистов, и витализм быстро прозрел, что ферменты — белковые по природе образования, хотя это не было доказано вплоть до XX в.
Слабым местом для виталистов, однако, оставалось то, что некоторые ферменты «срабатывали» как внутри клетки, так и вне ее. Ферменты, изолированные от пищеварительных соков, выполняли свою работу в тестах. Можно было предположить, что, если получить хотя бы один из ферментов, любую реакцию, идущую в живом организме, удалось бы воспроизвести. Более того, ферменты следовали тем же правилам, что неорганические катализаторы, например кислоты или платина.
Следуя виталистической позиции, ферменты, выделенные из пищеварительных соков, выполняли свою роль как внутри, так и вне клетки. Пищеварительный сок, циркулирующий внутри пищеварительного тракта, можно было налить и в трубку в эксперименте. Виталисты настаивали, что химики не в силах смоделировать эти процессы.
Ферменты к тому времени были разделены на две группы: неорганизованные ферменты, работающие также вне клетки, например пепсин; организованные ферменты, работающие только внутри клетки, которые заставляли дрожжи превращать сахар в алкоголь.
В 1876 г. немецкий физиолог Вильгельм Кюн (1837 — 1900) предложил использовать слово «фермент» только для процессов, требующих присутствия живого материала. Те ферменты, которые, будучи выделенными, могли работать вне клетки, он предложил называть энзимами (от греческого слова, означающего «дрожжи»).
В 1897 г. позиция виталистов в целом была подорвана немецким химиком Эдуардом Бюхнером (1860—1917). Он растер клетки дрожжей с песком до полного уничтожения, а затем профильтровал полученный материал, выделив клеточный дрожжевой сок. Ученый предполагал, что этот сок не обладает ферментизирующей способностью. Он добавил сок к сахару и, к своему изумлению, обнаружил, что сахар начал медленно ферментизироваться, хотя вся смесь была абсолютно неживой. Бюхнер продолжил эксперименты, убивая дрожжи спиртом, и обнаружил, что мертвые клетки дрожжей ферментизируют сахар так же, как и живые.
К концу XIX в. было признано, что все ферменты, как организованные, так и неорганизованные, можно выделить из клеток и заставить проделывать работу вне клеток. Термин «энзим» был применен ко всем ферментам, и было, наконец, признано, что клетка не содержит некоей жизненной силы.
Позиции Пастера и виталистов пошатнулись. Ферментация шла вне клетки, без некоей жизненной силы. Однако и тогда позиции виталистов не были разгромлены. Еще много необходимо было узнать о молекуле протеина (как об энзимах, так и неэнзимах), и не было уверенности в том, что жизненная сила не проявит себя как-либо еще.
До сих пор некоторые биологи стоят на виталистских позициях; однако общепринято в биологии, что живые формы подчиняются тем же законам, что и неживые; в лабораторных условиях можно смоделировать практически все ситуации.
Победу одержала механистическая точка зрения.