8.2. Эволюция нервной системы
8.2. Эволюция нервной системы
Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их функционирования удивительно сходен у представителей самых разных таксономических групп. Филогенетические преобразования нервной системы часто не укладываются в рамки традиционных представлений.
Наиболее простой вариант нервной системы (по диффузному типу) наблюдается у кишечнополостных (тип Cnidaria). Их нервные клетки относительно равномерно распределены в мезоглее. Однако даже у этих животных у подвижных форм наблюдается концентрация нервных клеток.
Более упорядоченную нервную систему мы встречаем в типе плоских червей (тип Plathelminthes). Нейроны переднего конца их тела концентрируются в головной ганглий, от которого отходят два или четыре нервных ствола. Но, возможно, самый древний тип нервной системы двусторонне-симметричных животных сохранился у нематод (тип Nematoda). У них не нервные, а мышечные клетки формируют отростки для нервно-мышечного соединения. Сама нервная система нематод представлена четырьмя стволами, соединенными окологлоточным нервным кольцом.
Более сложную структуру нервной системы имеют кольчатые черви (тип Annelida) с брюшной нервной цепочкой из ганглиев. Окологлоточное нервное кольцо включает в себя самый крупный головной ганглий. Этот вариант нервной системы оказался столь удачным, что сохранился у всех вышестоящих групп беспозвоночных.
Членистоногие (тип Arthropoda) и моллюски (тип Mollusca) являются самыми многочисленными типами животного царства, что показывает успех их эволюции. У них наблюдается прогрессирующая концентрация нейронов в головном отделе, параллельно с усложняющимся поведением. Ганглии, как правило, соединены или сливаются. Нервные пути, соединяющие разные отделы нервной системы, в нейрофизиологии называются комиссурами.
У представителей насекомых (класс Insecta) из членистоногих и головоногих (класс Cephalopoda) из моллюсков нервная система и поведение достигают исключительной сложности и представляют собой вершину организации в мире беспозвоночных. У насекомых в головном ганглии выделяют грибовидные тела – функциональные аналоги ассоциативных структур мозга позвоночных. Такую же роль выполняют центральные ганглии головоногих, причем их относительный размер весьма велик. Недаром крупных головоногих моллюсков называют «приматами моря».
У этих же представителей наиболее четко можно наблюдать реализацию двух стратегий поведения в эволюции беспозвоночных – ригидности и пластичности.
Ригидность представляет собой эволюционную направленность к генетически жестко программируемым действиям. Она нашла свое наиболее законченное выражение в поведении насекомых. Несмотря на всю сложность поведения, их миниатюрная нервная система имеет готовый набор программ. Так, количество нейронов у пчелы (Apis melifera) всего 950 000, что составляет ничтожную долю от их количества у человека (рис. 8.1). Но это количество позволяет ей осуществлять сложнейшие модели поведения практически без обучения. Большое число исследований посвящено изучению механизмов навигации у насекомых (в том числе пчел), их уникальной способности находить нужный путь. Эта способность базируется на использовании поляризационного света как компаса, что позволяет зрительная система насекомых.
Рис. 8.1. Пчелы. Можно ли их считать «живыми машинами»?
Некоторые авторы рассматривали насекомых как четкие «машины» (Мак-Фарленд Д., 1988). Однако в этологических экспериментах последних лет были продемонстрированы способности пчел к самым разнообразным формам научения. Даже крошечная мушка дрозофила (ее головной ганглий содержит в 50 раз меньше нейронов, чем у пчелы) способна к научению.
Пластичность подразумевает возможность коррекции генетически детерминированного поведения. Из беспозвоночных эта способность наиболее четко наблюдается у представителей головоногих моллюсков. Так, осьминог (Octopus dofleini) способен к весьма сложным формам научения (рис. 8.2). Концентрация нейронов осьминога формирует самый крупный и сложный ганглий беспозвоночных (Wells M., 1966). Наиболее важную роль в нем выполняют зрительные доли.
Рис. 8.2. Осьминог способен к весьма сложным формам научения
Поскольку в направлении пластичности шла эволюция нервной системы позвоночных, особенно млекопитающих, то этот вариант обычно преподносится как более прогрессивный. Однако в природе все за счет чего-то – любое достоинство одновременно является слабостью. Нервная система насекомых позволяет хранить огромное количество поведенческих программ в крошечном объеме нервных ганглиев с эффективной системой гормональной регуляции. Действительно, за компактность и экономичность своей нервной системы они заплатили отсутствием индивидуальности. «Зарегламентированность» мешает даже высокоорганизованным насекомым эффективно корректировать свое поведение. Но и «сверхпластичный» мозг человека оказался таким эволюционным приобретением, за которое ему пришлось заплатить слишком высокую цену. Об этом мы узнаем в последующих главах.
Следует помнить, что ни одна структура не хранит столько тайн, как нервная система. Подчеркнем, что сложность поведения нельзя напрямую связывать со строением нервной системы. У представителей с самой «примитивной» нервной системой иногда можно наблюдать исключительно сложное поведение. В некоторых исследованиях перепончатокрылые, особенно муравьи (рис. 8.3), показали феноменальные интеллектуальные способности (Резникова Ж. И., 2005). На чем они базируются – пока остается загадкой. И наоборот, жесткость генетических рамок в поведении оказалась значительно выше, чем предполагалось ранее, даже у самых «пластичных» видов, в том числе и у человека.
Рис. 8.3. Обладают ли муравьи когнитивными способностями?
Понятия ригидности и пластичности следует рассматривать лишь как полюса единого континуума, аналогичного континууму генетической детерминации поведения. Причем у одного вида разные аспекты поведения могут характеризоваться разной степенью пластичности.
В заключение этого раздела мне хотелось бы коснуться вопроса терминологии. Многие авторы называют головным мозгом головные ганглии насекомых, головоногих, высших ракообразных. Более того, термин «головной мозг» иногда употребляется и в отношении головных ганглиев других беспозвоночных. Хотелось бы выразить несогласие с таким подходом. Но не потому, что беспозвоночные «не достойны» столь «высокого титула» для своих нервных центров. Высшие беспозвоночные демонстрируют не менее совершенное поведение, чем многие позвоночные. Мы уже отметили, что не стоит однозначно решать вопрос прогрессивности. Я предлагаю оставить термин «мозг» только для позвоночных, исходя исключительно из структурных принципов организации нервной системы как производной нервной трубки.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
§ 3. Функциональная организация нервной системы
§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного
§ 5. Энергетические расходы нервной системы
§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью
§ 24. Эволюция ганглиозной нервной системы
§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае
§ 26. Происхождение нервной системы хордовых
§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых — трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать
§ 47. Особенности нервной системы млекопитающих
§ 47. Особенности нервной системы млекопитающих Центральная нервная система у млекопитающих развита больше, чем у какой-либо другой группы животных. Диаметр спинного мозга обычно несколько больше, чем у других тетрапод (см. рис. III-18, а). Он имеет два утолщения в грудном и
8.1. Принципы функционирования нервной системы
8.1. Принципы функционирования нервной системы Нервная система включает в себя нервную ткань и вспомогательные элементы, которые являются производными всех других тканей. В основе функционирования нервной системы лежит рефлекторная деятельность. Понятие рефлекса
Механизм действия нервной системы
Механизм действия нервной системы Теперь, вероятно, следует присмотреться к механизму действия этой сложной структуры, начав с простого примера. Если направить в глаза яркий свет, зрачок человека сужается. Эта реакция зависит от целой серии событий, которые начинаются в
1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ
1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их
МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ
МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с
Болезни нервной системы Л. В. Панышева
Болезни нервной системы Л. В. Панышева Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при
Исследования нервной системы
Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях
Типы нервной системы
Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к
Направления эволюции нервной системы
Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей
Заболевания нервной системы
Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30—60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при
Исследование нервной системы
Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие
8 Болезни нервной системы
8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая