8. Гипотеза Бюннинга
8. Гипотеза Бюннинга
Летом 1928 года Эрвин Бюннинг был приглашен к директору Института физических основ медицины во Франкфурте-на-Майне. Бюннинг в это время заканчивал учебу в Геттингенском университете, специализируясь по ботанике; он увлекался исследованиями раздражимости у растений и был немало озадачен, когда ему предложили подумать о возможном назначении в медицинский институт. Директор института профессор Дезауэр представил ему другого молодого ботаника, Курта Штерна, и объяснил, почему хочет предложить открывшиеся вакансии не врачам, а ботаникам.
Великий шведский химик Сванте Аррениус, сказал Дезауэр, опубликовал около тридцати лет назад статью, в которой сообщал о существовании связи между космическими факторами окружающей среды и заболеваниями человека. Он считал, в частности, что бронхит и эпилепсия связаны с изменениями атмосферного электричества, или, как сформулировал Дезауэр, с изменениями содержания ионов в атмосфере. Если это действительно так, то можно попытаться найти способы облегчить течение этих заболеваний.
Поскольку, однако, человеческий организм физиологически слишком сложен, начать эти исследования надо с какого-нибудь простого организма. Например, с растения, но такого, которое реагировало бы на изменение содержания ионов в воздухе. Вот почему он и приглашает к себе в институт двух молодых ботаников-экспериментаторов.
Эрвин Бюннинг, горевший желанием продолжать изучение раздражимости у растений, не сразу откликнулся на это предложение. Но, поразмыслив, решил, что если растения действительно реагируют на электрические заряды (что можно рассматривать как проявление раздражимости), то это само по себе обеспечивало бы новый, перспективный подход к проблеме раздражимости у растений в целом. И он принял предложение Дезауэра. Согласился и Курт Штерн. Осенью 1928 года оба ботаника с головой погрузились в исследовательскую работу.
Прежде всего им пришлось просмотреть большое количество научных статей, чтобы выбрать наиболее подходящее для своих экспериментов растение и найти методы, с помощью которых можно было бы обнаружить реакцию растений на ионы, содержащиеся в воздухе.
Вскоре им попалась работа Р. Штёппель, излагающая результаты экспериментов, проведенных ею в Гамбурге несколькими годами раньше. Она перепроверяла данные Пфеффера, изучавшего ритмы у растений календулы, и ей удалось показать, что листья изо дня в день в определенное время суток занимают одно и то же положение.
Исключительная точность движений листьев календулы привела ее к заключению, что ритм этот не может быть свойствен самому растению, поскольку в таком случае между отдельными растениями наблюдались бы индивидуальные различия, или сдвиги по фазе. Поэтому Штёппель пришла в выводу, что ответственным за столь точную реакцию растений на время должен быть некий фактор X.
Это было именно то, что искали Бюннинг и Штерн, — растение, движение листьев которого можно было точно измерить и которое реагировало, как полагала Штёппель, на некий, пока неизвестный фактор окружающей среды. А что, если этим фактором и была концентрация ионов в атмосфере, о которой писал Аррениус?
Возможность новых открытий взбудоражила всю лабораторию: срочно собиралась необходимая для исследований аппаратура, проращивались семена фасоли, которой предстояло заменить календулу.
Рис. 27. Один из первых приборов Бюннинга для записи суточных движений листьев фасоли.
Когда сеянцы подросли, молодые экспериментаторы прикрепили один конец тонкой нити к пластинке листа фасоли, другой ее конец — к рычажку, соединенному с пером, касавшимся вращающегося барабана, — приспособление, аналогичное кимографам, которыми пользовались их предшественники. В отличие от Штёппель они поместили одиночное растение в светонепроницаемый ящик: нить проходила через шлюз, и растение внутри ящика оказывалось полностью изолированным от внешнего света.
Чтобы собственными глазами убедиться в существовании ритма в движении листьев и проверить работу аппаратуры, экспериментаторы повторили опыты Штёппель. Все оказалось в полном порядке, и они сразу же начали серию экспериментов при изменении концентрации ионов в воздухе, находящемся в светонепроницаемом ящике. Наблюдая за отметками пера, регистрирующего движение листа на вращающемся барабане, Бюннинг и Штерн приходили все в большее недоумение: изменение концентрации ионов в воздухе не оказывало на сеянцы фасоли никакого влияния. Экспериментаторы ставили опыт за опытом. Они увеличивали содержание ионов в воздухе до концентраций, никогда не встречающихся в природе. Но ритмы движения листьев оставались неизменными; электрические заряды в атмосфере, по-видимому, не могли быть искомым фактором X.
Продолжая непрерывно изо дня в день наблюдать за растениями, Бюннинг и Штерн неожиданно обнаружили, что ритм движения листьев фасоли медленно отклоняется от суточного ритма! У одного растения, постоянно содержавшегося в темноте, ритм постепенно сдвигался к 22-часовому периоду. Другое растение сначала вообще потеряло «чувство времени», затем остановилось на 27-часовом периоде. Но ведь у Штёппель растения всегда точно соблюдали 24-часовой ритм! Может быть, все-таки существует таинственный фактор X, действие которого сказывалось в Гамбурге, но не проявляется во Франкфурте?
Тщательно, шаг за шагом проследили молодые ботаники описание методики экспериментов Штёппель, выискивая мельчайшие отклонения от нее в своих действиях, обращая внимание даже на, казалось бы, несущественные детали.
Штёппель содержала растения в темной комнате, куда она ежедневно в определенное время заходила, чтобы полить их. У них же растения находились в светонепроницаемом ящике, который при поливе не открывался.
Могло ли это явно незначительное различие в методике быть тем, что они искали? Как вообще Штёппель поливала растения в полной темноте? В статье она написала, что включала очень слабый красный свет, когда входила в темную комнату. Смешно было даже предполагать, что кратковременное освещение слабым красным светом может как-то повлиять на движение листьев. Считалось, что красный свет не оказывает на растения никакого действия. И тем не менее это было то единственное, что отличало их опыты от опытов Штёппель.
Ученые не могли пренебречь даже такой мелочью и решили проверить свои эксперименты еще раз. Они провели в темный ящик красный свет и ежедневно включали его в одно и то же время. Растения откликнулись немедленно: включение красного света задало им точный суточный ритм. Вот он таинственный, неуловимый фактор X! Всего лишь красный свет, который включала Штёппель, когда входила поливать растения!
Итак, ритмы растений, выращиваемых в строго постоянных условиях, действительно расходятся по фазе с суточным ритмом Земли. Кроме того, каждое растение имеет свой собственный ритм. А если ритмы растений, находящихся в одних и тех же постоянных условиях, отличаются как друг от друга, так и от суточного ритма Земли, тогда никакого таинственного фактора X просто нет. Ритмы эндогенны, то есть внутренне обусловленны по своей природе.
Эрвин Бюннинг продолжил свою работу по исследованию ритмов у растений в Иенском университете. Исследуя поведение многоцветковой фасоли, он сделал два важных открытия.
Первое из этих открытий заключалось в том, что растения, содержавшиеся с момента прорастания семени в постоянных условиях (непрерывного освещения или непрерывной темноты), полностью утрачивали суточный ритм. Но стоило такому растению получить единичное раздражение в виде световой вспышки, оно немедленно отвечало появлением правильного суточного ритма, который сохранялся довольно длительное время, несмотря на то, что растение продолжали содержать в темноте.
Смысл второго открытия сводился к тому, что в нормальных условиях в разное время суток растение по-разному реагирует на свет и темноту. Эти различия вызваны двумя качественно отличающимися стадиями эндогенного ритма, которые сменяют друг друга примерно каждые двенадцать часов. Иначе говоря, если в течение одного двенадцатичасового периода растение способно отвечать только на воздействие света, то в течение следующего двенадцатичасового периода оно будет реагировать только на темноту.
Когда-то Клейнхоонте не смогла проследить за поведением мечевидной канавалии в течение нескольких последовательных поколений. Это и понятно: чтобы получить следующее поколение такого растения и перейти к наблюдению за ним, требуется довольно длительный промежуток времени. Но существует организм, который обладает целым рядом преимуществ, делающих его ценным объектом для лабораторных экспериментов. Это плодовая мушка Drosophila. Она легко размножается на дрожжевой среде, дает многочисленное потомство, что позволяет получать статистически вполне достоверные результаты. И кроме того, цикл ее развития при обычной комнатной температуре составляет всего одиннадцать дней.
Помимо этих преимуществ у плодовой мушки есть еще одна особенность, которая делала ее идеальным объектом для экспериментов, задуманных Бюннингом: ей свойственно точное время выхода взрослой особи из куколки. При содержании в нормальных условиях взрослая мушка выходит из куколки всегда в одно и то же время, незадолго до рассвета. Затем зрелые особи спариваются, самки откладывают яйца, которые претерпевают обычные для насекомых превращения, и через одиннадцать дней точно перед рассветом из них появляется новое поколение взрослых мушек.
Бюннинг вырастил несколько поколений дрозофил в нормальных условиях чередования света и темноты при постоянной температуре. Затем он поместил этих мушек в условия непрерывного освещения при той же постоянной температуре. Первое поколение дрозофил появилось из куколок, как он и ожидал, точно с рассветом.
На протяжении скольких поколений будет прослеживаться эта закономерность? Почти шесть месяцев дрозофилы были лишены возможности определить, когда день сменяется ночью; все это время Бюннинг вел свои предрассветные наблюдения. Шестнадцатое поколение дрозофил появилось на свет столь же пунктуально, как и первое!
Имея в руках множество примеров ритмического поведения растений и животных, Бюннинг не мог остановиться ни на одном из них, как на характерном для какого-то более общего явления. Короче говоря, у Бюннинга пока не было гипотезы, которая могла бы связать все эти наблюдения воедино.
В те годы основной интерес ученых был направлен на изучение протекающих в живых системах биохимических реакций. Казалось вполне естественным в качестве механизма, которым пользуются растения для измерения продолжительности суток, рассматривать одну из обратимых биохимических реакций, например переход какого-либо пигмента из одной формы в другую. (По аналогии такой переход уподобляли пересыпанию песка в песочных часах.) Были даже известны две формы растительного пигмента фитохрома, содержание которых легко определялось и непосредственно в живых растениях.
Концепция песочных часов была для того времени вполне своевременной, поскольку это представление опиралось на биохимический процесс, за ходом которого можно было следить с помощью современных измерительных приборов. Она приобрела много сторонников, ее поддерживали признанные авторитеты.
Поэтому Бюннингу потребовалась изрядная доля мужества, чтобы в этой ситуации выдвинуть новую концепцию, резко противоречащую уже существовавшей.
Вот тот ряд экспериментальных данных, которые Бюннинг положил в основу своей гипотезы:
Растения определяют время года, измеряя продолжительность дневного периода суток (Гарнер и Аллард).
Ритмы растений очень точны; растения обнаруживают эти ритмы и при отсутствии временных ориентиров; хотя растения можно заставить следовать аномальным циклам чередования света и темноты, они возвращаются к нормальному циркадному ритму, как только снимается действие аномального стимула (Клейнхоонте).
Пчел можно приучить прилетать за кормом в определенное время дня, и они продолжают это делать, даже когда освещение, температура, влажность и концентрация электрических зарядов в атмосфере постоянны; пчел не удается приучить к девятнадцатичасовому циклу (Белинг). На время прилетов пчел не влияет и изменение интенсивности космических лучей (Валь).
Изменения концентрации заряженных ионов в атмосфере не влияют на суточные движения листьев, и в то же время листья точно следуют ритму, задаваемому включением красного света (Бюннинг и Штерн).
Фаза ритма движения листьев может быть сдвинута единичной световой вспышкой во время темнового периода (Бюннинг).
Четко связанный со временем суток выход дрозофил из куколок сохраняется на протяжении пятнадцати поколений мушек, содержавшихся в постоянных условиях (Бюннинг).
Исходя из этих результатов, Бюннинг сформулировал два постулата:
1. У растений существует эндогенный ритм некоторой жизненно важной функции, которая связана с началом цветения.
2. Растения используют этот ритм для измерения времени.
Сопоставив эти постулаты с результатами экспериментальных наблюдений, Бюннинг пришел к следующей гипотезе.
Рис. 28. Эрвин Бюннинг в одной из теплиц Тюбингенского университета,
За фотопериодизм цветения ответствен тот же самый временной механизм, который определяет временную последовательность движения листьев. Этот временной механизм имеет две противоположные фазы примерно двенадцатичасовой продолжительности каждая, «светолюбивую» и «темнолюбивую». Светолюбивая фаза — это фаза дневная, а темнолюбивая — ночная. Следовательно, свет, падающий на растение в течение светолюбивой фазы, будет стимулировать цветение, тогда как действие света во время темнолюбивой фазы будет его тормозить.
Обратите внимание на то, что гипотеза сама по себе не связывает эти две фазы временного механизма с поведением пчел или плодовых мушек, но уверенность Бюннинга в эндогенном характере таких временных механизмов позволила ему непосредственно связать ее и с этими наблюдениями.
Сегодня, тридцать пять лет спустя, гипотеза Бюннинга все еще не получила полного признания. Одни биологи продолжают не доверять ей. Другие приняли ее, но с некоторыми оговорками. Третьи нашли в ней новые экспериментальные подходы, заслуживающие того, чтобы обратить на них внимание. Карл Хамнер, например, сказал: «Я считаю, что моя работа, как и работа моих учеников, весьма убедительно доказывает участие эндогенных ритмов в фотопериодических реакциях организмов. Очень может быть, что наши данные подтверждают гипотезу Бюннинга»[10].
Рис. 29. Суточные ритмы цветков Kalanchoe при постоянных условиях. Цветки открываются в дневное время (вверху) и закрываются на ночь (внизу).
Но, разделившись в своем отношении к самой гипотезе, биологи все-таки полностью (за небольшим исключением) согласились с теми двумя постулатами, от которых, как мы отметили ранее, отталкивался Бюннинг.
Эти два момента настолько важны, что их стоит повторить. Во-первых, растениям (вероятно, и животным) свойственны эндогенные циркадные ритмы, то есть ритмы, которые многократно повторяются с примерно 24-часовой периодичностью. Кроме того, что наиболее важно, эти ритмы самоподдерживающиеся: организмы способны извлекать энергию из некоторого постоянного источника и использовать ее для поддержания необходимых для их существования чередующихся циклов, которые проявляются в форме ритмической активности.
Во-вторых, организмы используют такие эндогенные ритмы для измерения времени.
Вот эти-то представления и произвели сенсацию в научном мире. Сама мысль, что растение обладает часами, была слишком уж фантастической! Настолько фантастической, что потребовалось еще целых пятнадцать лет, прежде чем накопилось достаточно данных, свидетельствующих в пользу того, что птицы и пчелы ориентируются по солнцу и звездам. А такая ориентация возможна только в том случае, если у животных есть внутренние часы. Когда все это было доказано, резко возрос интерес к биологическим часам и были предприняты новые исследования самых разных организмов — от одноклеточных растений до человека.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Гипотеза Лоренца о внутренних механизмах инстинктивных действий
Гипотеза Лоренца о внутренних механизмах инстинктивных действий На основе подобных фактов о свойствах инстинктивных действий Лоренц выдвинул ряд положений об их внутренних механизмах. Согласно его представлениям, под действием ряда внешних и внутренних факторов
Хемиосмотическая гипотеза
Хемиосмотическая гипотеза На, чем же мы споткнулись? На том, что мембраны — негодный барьер для воды, продукта дыхания и фосфорилирования. Но из чего получается вода, например, при фосфорилировании? Из иона водорода (Н+), отнятого от АДФ, и гидроксила (ОН-), отнятого от
Конформационная гипотеза
Конформационная гипотеза Тем не менее борьба еще не окончена, и не только из-за калиевой АТФазы. Появляется на свет божий новая, так называемая конформационная гипотеза сопряжения. Она пытается избавиться от наиболее вопиющих недостатков химической схемы, не прибегая к
4.3. Гея-гипотеза
4.3. Гея-гипотеза Эта гипотеза возникла в последние десятилетия ХХ века на основе учения о биосфере, экологии и концепции коэволюции. Авторами ее являются английский химик Джеймс Лавлок и американский микробиолог Линн Маргулис. В основе ее лежит представление о том, что
Глава 8 Моя собственная «водяная гипотеза». «X-pithecus». «Водяные дети» Чарковского. «Грудная гипотеза» Морган и моя. Сексуальные гипотезы Морриса. Прямохождение. Краткий обзор развития икспитека.
Глава 8 Моя собственная «водяная гипотеза». «X-pithecus». «Водяные дети» Чарковского. «Грудная гипотеза» Морган и моя. Сексуальные гипотезы Морриса. Прямохождение. Краткий обзор развития икспитека. Десмонд Моррис – зоолог и директор Лондонского зоопарка. Кстати, после
Глава 8 Неадаптивная нулевая гипотеза эволюции генома и истоки биологической сложности
Глава 8 Неадаптивная нулевая гипотеза эволюции генома и истоки биологической сложности Пер. А. НеизвестногоЭволюционная энтропия и сложностьНемногие модные слова в последние два десятилетия были настолько популярны и в то же время определялись столь разнообразно,
3. ГИПОТЕЗА О РАСПРЕДЕЛЕННОСТИ ЭНГРАММЫ
3. ГИПОТЕЗА О РАСПРЕДЕЛЕННОСТИ ЭНГРАММЫ Опыты с локальными раздражениями мозга показали, что развитие ретроградной амнезии при стимуляции определённой структуры зависит от интервала времени, прошедшего от момента завершения обучения до применения амнестического
Рабочая гипотеза
Рабочая гипотеза Изучив свойства трех родственных химических веществ, производимых мозгом, — дофамина, норадреналина и серотонина, я стала подозревать, что все они играют свою роль в формировании романтической страсти у человека.Чувство эйфории, бессонница, потеря
Гипотеза Пиноккио о происхождении собак
Гипотеза Пиноккио о происхождении собак Широко распространено мнение, что люди создали собак методом искусственного отбора: брали щенков из волчьих логов, приручали и обучали их, использовали для охоты; в итоге через множество поколений такой жизни волки превратились в
12.1. Гипотеза формативной причинности
12.1. Гипотеза формативной причинности Представление гипотезы формативной причинности в предыдущих главах этой книги может рассматриваться лишь как предварительный набросок: гипотезу можно разработать гораздо более детально как в сфере биологии, так и в области физики.
«Животная гипотеза»
«Животная гипотеза» Возможно, иному читателю трудно понять, что подразумевает заголовок этой главы, а подзаголовок может вообще показаться полнейшей загадкой. Между тем нам не обойтись без научной терминологии, если мы не хотим, чтобы рассмотрение вопроса о возможности
7.2.2. Мультирегиональная гипотеза формирования Homo sapiens
7.2.2. Мультирегиональная гипотеза формирования Homo sapiens Хотя автору представляется предпочтительной представленная выше концепция формирования Homo sapiens в Африке и народообразующего выхода людей современного типа из Африки 80–60 тыс. лет тому назад, необходимо отметить, что
Рабочая гипотеза
Рабочая гипотеза Возникновение пассивно-оборонительной реакции в потомстве при скрещивании гиляцких лаек с немецкими овчарками, с одной стороны, и более резкое проявление трусости от скрещивания волка с собаками — с другой, наводят на мысль о том, что в обоих случаях мы
Начальная гипотеза
Начальная гипотеза Я употребил понятие «исследователи», а не понятие «ученые». Почему? Даже не потому, что нынешние ученые это профессионалы по получению зарплат, а не по проведению исследований, а потому, что ученым вбили в головы мудрость, и они, несчастные, за пределы
Новая гипотеза
Новая гипотеза Личность человека — его сознание, включая его память, способность мыслить и испытывать эмоции — является некоторым объемом мирового эфира, в котором эфир структурирован внесенной в него кодированной информацией, образующей как файлы памяти, так и
Гипотеза «заботливых бабушек»
Гипотеза «заботливых бабушек» Изменения в структуре онтогенеза привели к еще одной значимой инновации — появлению менопаузы. Менопауза имеет место только у человека и в выраженном виде у других современных приматов отсутствует. Ее возникновение для антропологов