Рассмотрим некоторые вехи истории генетики
Рассмотрим некоторые вехи истории генетики
1901 г. – Г. де Фриз предложил первую мутационную теорию.
1903 г. – У. Саттон (1876–1916) и Т. Бовери (1862–1915) выдвинули хромосомную гипотезу, «связывая» менделевские факторы наследственности с хромосомами.
1906 г. – У. Бэтсон (1861–1926) предложил термин «генетика».
1907 г. – У. Бэтсон описал варианты взаимодействия генов («наследственных факторов») и вводит понятия «комплементарность», «эпистаз», «неполное доминирование». Им же ранее (1902 г.) были введены термины «гомозигота» и «гетерозигота».
1908 г. – Г. Нильсон-Эле (1873–1949) объяснил и ввел понятие «полимерия», обозначающее важнейшее явление в генетике количественных признаков.
Г. Харди (1877–1947) и В. Вайнберг (1862–1937) предложили формулу распределения генов в популяции, известную впоследствии как закон Харди – Вайнберга – ключевой закон генетики популяций.
1909 г. – В. Иоганнсен (1857–1927) сформулировал ряд принципиальных положений генетики и ввел основные термины: «ген», «генотип», «фенотип», «аллель». В. Волтерек ввел понятие «норма реакции», характеризующее возможный спектр проявления гена.
1910 г. – Л. Плате (1862–1937) разработал представление о множественном действии генов и ввел понятие «плейотропия».
1912 г. – Т. Морган (1866–1945) предложил теорию хромосомной локализации генов. К середине 1920-х годов Т. Морган и представители его школы – А. Стёртевант (1891–1970), К. Бриджес (1889–1938), Г. Меллер (1890–1967) сформулировали свой вариант теории гена. Проблема гена стала центральной проблемой генетики.
1920 г. – Г. Винклер ввел термин «геном». В дальнейшем разработка этого понятия стала новым этапом в развитии генетики.
Н. И. Вавилов (1887–1943) сформулировал закон гомологичных рядов наследственной изменчивости.
1921 г. – Л. Н. Делоне (1891–1969) предложил термин «кариотип» для обозначения совокупности хромосом организма. Предложенный ранее С. Г. Навашиным (1857–1930) термин «идиограмма» в дальнейшем стал применяться для стандартизированных кариотипов.
1926 г. – Н. В. Тимофеев-Ресовский (1900–1981) разработал проблему влияния генотипа на проявление признака и сформулировал понятия «пенетрантность» и «экпрессивность».
1927 г. – Г. Меллер получает мутации искусственным путем под действием радиоактивного облучения. За доказательства мутационного эффекта радиации он получил Нобелевскую премию 1946 г.
1929 г. – А. С. Серебровский (1892–1948) впервые продемонстрировал сложную природу гена и показал, что ген не является единицей мутации. Он же сформулировал понятие «генофонд».
1930–1931 гг. – Д. Д. Ромашов (1899–1963), Н. П. Дубинин (1907–1998), С. Райт (1889–1988), Р. Фишер (1890–1962), Дж. Холдейн (1860–1936) разработали теоретические направления популяционной генетики и выдвинули положение о дрейфе генов.
1937 г. – Ф. Г. Добжанский (1900–1975) опубликовал книгу «Генетика и происхождение видов», с которой ведет отсчет синтетическая теория эволюции.
1941 г. – Дж. Бидл (1903–1989) и Э. Тейтум (1909–1975) формулируют фундаментальное положение: «один ген – один фермент» (Нобелевская премия 1958 г.).
1944 г. – О. Эвери (1877–1955), К. Мак-Леод (1909–1972), М. Мак-Карти доказали генетическую роль ДНК в экспериментах по трансформации микроорганизмов. Это открытие символизировало начало нового этапа – рождение молекулярной генетики.
1946 г. – Дж. Ледерберг, Э. Тейтум, М. Дельбрюк (1906–1981) описали генетическую рекомбинацию у бактерий и вирусов.
1947 г. – Б. Мак-Клинток (1902–1992) впервые описал мигрирующие генетические элементы (это выдающееся открытие было отмечено Нобелевской премией только в 1983 г.).
1950 г. – Э. Чаргафф показал соответствие пуриновых и пиримидиновых нуклеотидов в молекуле ДНК (правило Чаргаффа) и ее видовую специфичность.
1951 г. – Дж. Ледерберг с сотрудниками открыл явление трансдукции, в дальнейшем сыгравшее ключевую роль в становлении генной инженерии.
1952 г. – А. Херши (1908–1997) и М. Чейз показали определяющую роль дезоксирибонуклеиновой кислоты в вирусной инфекции, что явилось окончательным подтверждением генетического значения ДНК.
1953 г. – Дж. Уотсон и Ф. Крик предложили структурную модель ДНК. Эта дата считается началом эры современной биологии.
1955 г. – С. Очоа (1905–1993) выделил фермент РНК-полимеразу и впервые осуществил синтез РНК in vitro.
1956 г. – А. Корнберг выделил фермент ДНК-полимеразу и осуществил процесс репликации ДНК в лабораторных условиях.
1957 г. – М. Мезельсон и Ф. Сталь доказали полуконсервативный механизм репликации ДНК. В лаборатории М. Хогланда открыли т-РНК.
1958 г. – Ф. Крик сформулировал «центральную догму молекулярной биологии».
1960 г. – М. Ниренберг, Дж. Маттей, Г. Корана начали исследования по расшифровке генетического кода. Работа (с участием нескольких исследовательских групп) была завершена в 1966 г. Составление кодового словаря явилось одним из крупнейших достижений науки за всю историю человечества.
1961 г. – Ф. Жакоб и Ж. Моно (1910–1976) сформулировали теорию оперона – теорию генетической регуляции синтеза белка у бактерий.
1962 г. – Дж. Гердон впервые получил клонированных позвоночных животных.
1965 г. – Р. Холли (1922–1993) раскрыл структуру т-РНК.
1969 г. – Г. Корана впервые синтезировал ген в лабораторных условиях.
1970 г. – Г. Темин (1934–1994) и Д. Балтимор открыли явление обратной транскрипции.
1972 г. – П. Берг получил первую рекомбинантную молекулу ДНК. Эта дата считается датой рождения генной инженерии.
1974 г. – Р. Корнберг, А. Олинс, Д. Олинс сформулировали теорию нуклеосомной организации хроматина.
1975 г. – По инициативе группы ученых во главе с П. Бергом («комитет Берга») в Асиломаре (США) проведена Международная конференция по этическим проблемам генной инженерии, на которой провозглашен временный мораторий на ряд исследований.
Мораторий не остановил работ по генной инженерии, и в последующие годы эта область активно развивалась, зародилось новое направление – биотехнология.
1976 г. – Д. Бишоп и Г. Вармус раскрыли природу онкогена (Нобелевская премия 1989 г.).
1977 г. – У. Гилберт, А. Максам, Ф. Сенджер разработали методы секвенирования (определения последовательности нуклеотидов нуклеиновых кислот).
Р. Робертс и Ф. Шарп показали мозаичную (интрон-экзонную) структуру гена эукариот (Нобелевская премия 1993 г.).
1978 г. – Осуществлен перенос эукариотического гена (инсулина) в бактериальную клетку, где на нем синтезирован белок.
1981 г. – Получены первые трансгенные животные (мыши). Определена полная нуклеотидная последовательность митохондриального генома человека.
1982 г. – Показано, что РНК может обладать каталитическими свойствами, как и белок. Этот факт в дальнейшем выдвинул РНК на роль «первомолекулы» в теориях происхождения жизни.
1985 г. – Проведено клонирование и секвенирование ДНК, выделенной из древней египетской мумии.
1988 г. – По инициативе генетиков США создан международный проект «Геном человека».
1990 г. – В. Андерсен впервые произвел введение нового гена в организм человека.
1995 г. – Расшифрован первый бактериальный геном. Становление геномики как самостоятельного раздела генетики.
1997 г. – Я. Вильмут осуществил первый успешный опыт по клонированию млекопитающих (овца Долли).
1998 г. – Секвенирован геном первого представителя эукариот – нематоды Caenorhabditis elegans.
2000 г. – Работа по секвенированию генома человека завершена.
Генетика все более входит в повседневную жизнь людей, во многом определяя будущее человечества. Все более интенсивно проводятся исследования генома человека.
Можно не сомневаться, что эксперименты по «конструированию человека» будут продолжены, несмотря на любые запреты. Все чаще обсуждаются в печати вопросы клонирования человека, воздействие на его генотип, опасность модифицированных продуктов… Как все это скажется на судьбе человечества, предсказать невозможно.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
ОСНОВНЫЕ ВЕХИ ГЕНЕТИКИ И ГЕНОМИКИ
ОСНОВНЫЕ ВЕХИ ГЕНЕТИКИ И ГЕНОМИКИ Inventas vitam juvat excoluisse per artes. Изобретения улучшают жизнь, искусство украшает ее. Надпись на нобелевской медали, фраза из «Энеиды» Вергилия 1865 годОткрытие Г. Менделем (1822–1884) факторов наследственности и разработка гибридологического метода,
ОСНОВНЫЕ ВЕХИ ГЕНЕТИКИ И ГЕНОМИКИ
ОСНОВНЫЕ ВЕХИ ГЕНЕТИКИ И ГЕНОМИКИ Inventas vitam juvat excoluisse per artes. Изобретения улучшают жизнь, искусство украшает ее. Надпись на нобелевской медали, фраза из «Энеиды» Вергилия 1865 год Открытие Г. Менделем (1822–1884) факторов наследственности и разработка гибридологического метода,
Глава 7 Основы генетики
Глава 7 Основы генетики Тупиковые вопросы дарвинизмаПричина ошибочного использования эволюционной теории — природа механизма наследования, который и до сих пор до конца не изучен и тем более не был понят в XIX в. Спенсер ожидал быстрых изменений в человеческом
Достижения сравнительной генетики
Достижения сравнительной генетики Сравнительный анализ митохондриальной ДНК и Y-хромосом современных людей показал, что человечество происходит от небольшой популяции, жившей в восточной Африке 160-200 тыс лет назад. Homo sapiens оказался молодым видом с очень низким уровнем
Практическое применение менделевской генетики
Практическое применение менделевской генетики Несомненно, наибольшее применение менделевская генетика находит в животноводстве и растениеводстве. Правда, ее можно приложить и к человеку, но здесь возможности ее ограниченны. Предположим, мужчина или женщина перед
Глава 1. История и значение генетики
Глава 1. История и значение генетики Генетика – это сердцевина биологической науки. Лишь в рамках генетики разнообразие жизненных форм и процессов может быть осмыслено как единое целое. Ф. Айала, американский генетик, автор учебника «Современная генетика» Генетика
1.1. История генетики
1.1. История генетики Хотя возраст генетики как науки немногим более 100 лет, история ее зарождения уходит в глубь веков. История генетики – это не просто история конкретной науки, а, скорее, самостоятельный раздел биологии, где переплелись биологические, психологические и
1.2. Ключевые вопросы в истории генетики
1.2. Ключевые вопросы в истории генетики В истории генетики (и ее предыстории) можно выделить ряд ключевых тем, по их значению для научного мировоззрения и остроте дискуссий. В XVII–XVIII вв. – это была проблема «преформизм – эпигенез», причем лагерь преформистов делился на
1.3. Структура генетики и ее общебиологическое значение
1.3. Структура генетики и ее общебиологическое значение Современная генетика представляет собой обширное древо производных дисциплин. Ее специализированные разделы стали рассматриваться как крупные самостоятельные науки – генетика человека, цитогенетика,
10.1. Человек как объект генетики
10.1. Человек как объект генетики Человек представляет собой довольно трудный объект для генетических исследований. Как высокоорганизованный вид, он имеет сложную генетическую организацию. Однако объем и структура генетического материала человека не имеет
Основные понятия генетики
Основные понятия генетики Предметом изучения генетики являются два неразрывных свойства всех живых организмов — наследственность и изменчивость. Изменчивость представлена многообразием форм внутри каждого вида, породы и даже одного помета. Но в то же время все
Генетики, «заигравшиеся в богов»
Генетики, «заигравшиеся в богов» 14 апреля 2006 года на проповеди по случаю Страстной пятницы высший иерарх Римско–католической церкви, Папа Римский Бенедикт XVI, сделал ясную и смелую декларацию. Римский папа осудил ученых–генетиков, «которые заигрались в Бога».Обращаясь
Тема 1. История и значение генетики
Тема 1. История и значение генетики Генетика – это сердцевина биологической науки. Лишь в рамках генетики разнообразие жизненных форм и процессов может быть осмыслено как единое целое. Ф. Айала, американский генетик Генетика изучает два неразрывных свойства живых
Некоторые актуальные вопросы генетики поведения и высшей нервной деятельности[50]
Некоторые актуальные вопросы генетики поведения и высшей нервной деятельности[50] Исследования по генетике поведения начались почти с самого начала нынешнего столетия, когда законы Менделя стали достоянием широких кругов биологов.При этом выяснилось, что признаки
В тупике генетики
В тупике генетики Если не курение, то тогда что вызывает рак? Ведь заболеваемость раком продолжает расти и, что особенно страшно, рак переползает на все более молодых.Сначала немного в общем о биологии и медицине.В том контексте, в котором сегодня используется понятие