Глава 211. Абиогенная (химическая) эволюция (VIII)

We use cookies. Read the Privacy and Cookie Policy

Глава 211. Абиогенная (химическая) эволюция (VIII)

Гипотезы о происхождении жизни на Земле исходят в основном из двух предположений. Это либо гипотеза панспермии (что многих не устраивает, поскольку, как они полагают, она лишь отодвигает событие в прошлое и не решает задачу), либо кажущееся гораздо более вероятным предположение о том, что на Земле земная жизнь и возникла. Варианта первой гипотезы мы коснемся позже (ему эта книга и посвящена), что до вероятного предположения, то его сторонники справедливо полагают, что его подтверждением может быть только эксперимент. Именно так считал и Виталий Гинзбург. «В настоящее время мы полагаем, – говорил он, – что знаем, из чего устроено все живое – из электронов, атомов и молекул46. Знаем строение атомов и молекул, а также управляющие ими и излучением законы. Поэтому естественна гипотеза о редукции – возможности все живое объяснить на основе физики, уже известной физики. Образование в условиях, царивших на Земле несколько миллиардов лет назад, сложных органических молекул уже прослежено, понято и смоделировано. Казалось бы, переход от таких молекул и их комплексов к простейшим организмам, к их воспроизводству можно себе представить. Но здесь имеется какой-то скачок, фазовый переход. Проблема не решена, и я склонен думать, будет безоговорочно решена только после создания жизни в пробирке». Две выделенные здесь фразы требуют комментария. Сложные органические молекулы, о которых говорится в первой из них, свидетельствуют, конечно, о прогрессе в обсуждаемой области, однако, это еще слишком простая сложность (прошу прощения за невольный каламбур), и ее для обозначенных целей совершенно недостаточно. Уровень сложности, необходимый для моделирования возникновения жизни, определяется не только сложностью самих молекул (то есть числом и разнообразием атомов, их составляющих). Эти молекулы должны объединяться в реакционные циклы и гиперциклы и катализировать их звенья. При этом они должны быть способны формировать цепочки (линейные полимеры), которые – в свою очередь – должны быть способны сохранять информацию и дублировать ее – с ошибками, частота которых не должна превышать значения, позволяющего лишь немного модифицировать исходный контент для отбора оптимального варианта. Ничего похожего в пробирке пока не создано. Совсем недавно удалось химическим путем «собрать» рибонуклеотид, один из четырех основных «кирпичиков», из которых «сделана» РНК. Очень долгое время и эту задачу решить не удавалось. Гинзбург определенно оценивал ситуацию более оптимистично, чем она есть. Второй комментарий касается создания «жизни в пробирке». Мы уже говорили, что в привычном смысле эксперимент по созданию жизни в пробирке, скорее всего, бесперспективен. Для этого требуются другие пространственные масштабы – как минимум, масштаб планеты или, скорее, планетной системы. Временные масштабы также придется увеличить: очень возможно, что для такого эксперимента потребуются те же 3—4 миллиарда лет. О том, что надо будет сделать экспериментатору, чтобы оценить результат своей работы, мы вспомним позже, а пока отметим, что чудовищные расстояния, отделяющие нас от планетных систем, где возможна иная жизнь, вполне могут служить эквивалентом стеклянной стенки пробирки, отделяющей мир экспериментатора от нашего собственного и надежно предупреждающей возможную взаимную контаминацию живым материалом.

Исследователи по-прежнему пытаются проследить, могли ли в первичной атмосфере молодой Земли возникнуть молекулярные компоненты жизни, повторяя классический эксперимент Гарольда Юри и Стэнли Миллера по поискам «сложных органических молекул» в сосуде, где воспроизводится эта атмосфера и внешние воздействия на нее, включая электрические разряды. И ее газовый состав, и другие компоненты среды постоянно модифицируют – в зависимости от последних о них представлений, а для поисков «сложных органических молекул» используют все более изощренные методы и приборы, с помощью которых в продуктах даже исходного эксперимента удается обнаружить такие соединения (аминокислоты), которых не могли найти его авторы.

Конечно, такой подход не может иметь целью создание «жизни в пробирке». До того, как в таком сосуде возникнут хиральная чистота биомолекул, генетический код и первые клетки, пройдет не меньше времени, нежели требуется для случайного воспроизведения одной страницы Войны и мира из рассыпанного набора.

Виталий Гинзбург прав, как нам кажется, совершенно в другом. Его слова фактически означают, что как только возникнет возможность «полевой» проверки результатов «стендовых» экспериментов по воспроизведению отдельных этапов абиогенной молекулярной эволюции, которая в принципе могла привести к возникновению жизни, такая проверка будет осуществлена НЕИЗБЕЖНО. Так устроен разум. А пока – несмотря на «привилегированное положение» нашей планеты в пространстве и во времени, описанное в предыдущей главе, мы совершенно не представляем себе, как это – или какие еще условия – определили, скажем, хиральную чистоту биологических молекул и почему выбор пал на левовращающие аминокислоты и правовращающие сахара. Что такое хиральность, можно прочесть повсюду. Суть ее выражает зеркальная симметрия рук человека. Обе руки повторяют друг друга в деталях, но на правую руку не наденешь левую перчатку – и наоборот. Так же устроены и некоторые молекулы – например, молекулы тех же аминокислот и сахаров.

Продукты чисто химического синтеза тех и других всегда представляют собой рацематы, то есть смеси равных количеств лево– и правовращающих молекул, энантиомеров (оптически активных изомеров, вращающих плоскость поляризации влево или вправо). Продукты же их биологического синтеза гомохиральны – иначе структуры их полимеров будут произвольно нарушены, что приведет к безусловной утрате необходимых функций. Больше того, поскольку продукты реакции право– и левовращающих энантиомеров исключительно с правовращающим веществом не являются зеркальным отражением друг друга, они имеют разные физические свойства, например, растворимость в воде, и значит, они могут быть отделены друг от друга. Другими словами, оптически неактивные реактивы производят оптически неактивные продукты – вследствие работы законов термодинамики. Для разрешения рацемата (то есть для разделения энантиомеров) в реакцию должно быть введено другое гомохиральное вещество.

Происхождение гомохиральности неясно. Вероятность самостоятельного образования одного гомохирального полимера ничтожна; еще – и гораздо – ниже вероятность образования гомохирального полимера с определенной функциональной активностью. В принципе это означает, что процессы полимеризации, матричного копирования полимеров и формирования гомохиральности происходили одновременно и взаимосвязано, для чего потребовались весьма специфические – и в полном объеме пока неизвестные – условия, часть которых (в терминах мегамасштабных «естественных привилегий») описана выше. Таким образом, первые две из трех Великих Молекулярных Революций, приведших к возникновению жизни (1. Хиральность – 2. Генетический Код – Клетка), совпадала по времени с двумя Большими Скачками, Major Transitions, как их назвали Мэньярд Смит и Эорс Шатмари47:

возникновение генов (в рамках чего формировались машины полимеризации нуклеиновых кислот и машины копирования матриц) и

возникновение белков (в рамках чего формировались машины полимеризации аминокислот и самое нуклеино-белковое кодирование).

Эти процессы должны были иметь планетарный масштаб: жизнь вряд ли возникла в одной лужице (или у единственного глубоководного термального источника), распространяясь затем по всей Земле и преодолевая «враждебное окружение». Скорее всего, сходные события имели место во многих местах, после чего – при соприкосновении друг с другом – они в некоторых случаях конкурировали, в других кооперировались в общую систему. Более того, эти процессы можно уже связывать с жизнью, поскольку гомохиральныене-биологические вещества рацемизируются со временем. «Неживая» химия обсуждаемых процессов имеет тенденцию к равновесию (то есть к смерти, а не к жизни).

Предложены самые различные гипотезы естественного возникновения гомохиральности биологических макромолекул, основанные на некотором нарушении равновесия энантиомеров в рацемате, обусловленном, например, их круговым дихроизмом, то есть неравным поглощении фотонов света правыми и левыми энантиомерами с последующим отбором, – или бета-распадом, который управляется слабым ядерным взаимодействием, обладающем небольшой хиральностью, называемой несохранением четности, – или самоотбором, который наблюдал еще Пастер, – или сильным магнитным полем и т. п. Ни одна из них не убеждает оппонентов, ни одна из них не является вполне удовлетворительной для объяснения обсуждаемого феномена, который продолжает выглядеть счастливой случайностью. Невольно отмечаешь, что возникновение «молекул жизни» (гомохиральных, разумеется) привязано в этих гипотезах к поверхности планеты (гипотеза Опарина) или к ее атмосфере (гипотеза, проверке которой был посвящен эксперимент Миллера-Юри). Между тем, быстрота, с какой на Земле возникла жизнь (практически сразу после образования планеты), наводит и на другие предположения.

Так называемые «плотные молекулярные облака» в космосе – это, по земным меркам, сверхглубокий вакуум. Тем не менее, в таких облаках есть и молекулы, и органические вещества, и возможность химических реакций. Виталий Гольданский предположил, что первичный органический синтез происходил именно в молекулярных облаках. По гипотезе Сванте Аррениуса, органическое вещество выпало на Земле в готовом виде. Объединенная гипотеза Аррениуса-Гольданского, тем не менее, также не выглядит удовлетворительной: химический синтез в молекулярных облаках, скорость которого чрезвычайно низка, не компенсирует разрушения продукта в условиях космоса. В то же время частички таких облаков чрезвычайно малы, и это открывает возможность для молекулярных флуктуаций.

Весьма любопытную гипотезу выдвинули Валерий Снытников и Валентин Пармон (http://evolution.powernet.ru/library/lifecreate.htm). Они предположили, что самоорганизация является таким механизмом воздействия протозвезды на свое окружение, который приводит к формированию одновременно и планет, и универсального природного каталитического реактора, в котором синтезируется органическое вещество. Это предположение авторы отслеживали в разработанных ими математических моделях. В основе самоорганизации лежит развитие коллективной неустойчивости, взаимодействие множества малых тел самого различного масштаба – от молекул до астероидов. Когда совокупная масса твердых тел в газе (т. е. в молекулярном облаке) начинает превышать определенную величину, коллективная неустойчивость движения этих тел и газа приводит к образованию разнообразных динамических структур (колец, спиралей, дисков, шаров и т. п.). Общая масса эта, концентрирующаяся вокруг протозвезды, увеличивается благодаря вращению всей системы, а локальное увеличение масс твердых тел происходит за счет слипания в газе вязких и рыхлых тел. Так происходит образование твердых катализаторов, содержащих в необходимой комбинации железо, кремний, никель в их природной распространенности. Поскольку в околозвездном облаке нет недостатка в субстратах катализа (окись углерода, водород и др.), начинают образовываться все более сложные органические молекулы. Все эти процессы радикально меняют характер неустойчивости. На фоне общей плотности появляются относительно стабильные сгустки вещества. Эти сгустки могут двигаться в самом произвольном направлении – подобно солитонам, одиночным волнам плотности. Оказалось, что давление газа в такой волне приближается к атмосферному земному, на два – и более – порядка превышая окружающее. Эта волна действует как саморегенерируемый (за счет протозвезды) каталитический реактор, температура которого остается более или менее постоянной – в силу охлаждения гелием, также сконцентрированным в этом сгустке (именно в таких условиях, считают авторы, и следует изучать синтез первичного органического вещества; они очень отличаются от условий обычных «земных» реакций типа эксперимента Юри-Миллера). Потенциально – как показывает моделирование – «космические солитоны» могут и разрушиться, но иногда они становятся «центрами кристаллизации» планет. При этом, двигаясь вокруг звезды, космический «солитон» теряет легкие составляющие – под действием солнечного ветра и деструктивного излучения. Далекие внешние планеты сохраняют первичные газы (и должны сохранять также первичную простую органику?). Более близкие к формирующемуся Солнцу «сгустки» собираются в планету, обогащенную тяжелыми и сложными органическими соединениями, которые могут служить субстратом для возникновения жизни (если она уже не зародилась – вместе с формированием хиральной чистоты молекул – до того, как сгусток приобрел вид первичной планеты). Образование планет из околозвездного облака в гравитационной физике детерминировано. Однако, место этого образования случайно. Там, где вода может находиться во всех трех фазовых состояниях – твердом, жидком и газообразном, – условия для возникновения жизни наиболее благоприятны.

Информация о том, как развивалась и что представляет собой наша Вселенная, накапливается стремительно и так же стремительно обогащает наши представления о происхождении жизни. В одном только 2009 году была сделана серия весьма крупных открытий. Самые громкие из них – открытие запасов воды на Луне, открытие абиогенного метана на Марсе, открытие на спутнике Сатурна Титане озер жидких углеводородов с сезонными движениями из полушария в полушарие, открытие там же так называемых криовулканов, которые извергают жидкую воду вместо магмы. За пределами Солнечной системы – это открытие все более легких планет, «суперземель», масса которых приближается к земной, а некоторые состоят из горных пород; открытие, вероятно, нового типа сверхновых (на слух астронома, новая сверхновая – никакой не каламбур) – небольшой массы и с некоторыми аномалиями содержания элементов. Каждая из этих находок может самым существенным образом изменить мир, каким мы видим его сегодня. Однажды достигнутая – в результате первой Великой Молекулярной Революции – хиральная чистота, совершенно необходимая для надежной работы машин матричного копирования, должна была немедленно закрепиться в составе конкурентоспособных каталитических гиперциклов. Воспроизведение абиогенных условий, которые к ней привели – задача чрезвычайно нелегкая и еще очень далека от решения, хотя сегодня уже показана возможность синтеза целого класса биологически важных органических соединений с 80%-ым доминированием одного из энантиомеров. Очень важно, что один из применяемых при этом катализаторов – фотозависимый. Света в молекулярном облаке, где формируется описанный солитон, более, чем достаточно.

Как сформировалась клетка, результат третьей Великой Молекулярной Революции и единица сегодняшней самостоятельной жизни, – разговор особый. Так или иначе, но компартментализация молекулярных процессов, которую она обеспечивает, приводит к весьма серьезным селективным преимуществам – дискретности и недолговечности, в формате которых наиболее эффективны отбор (конкуренция) и кооперация – со специализацией отдельных элементов и последующей многоклеточностью. Однажды достигнутая, клеточная организация жизни быстро переиграла любую альтернативную и стала доминирующей. В этой книжке мы не будем говорить о происхождении клетки. Это происхождение – как и возникновение хиральной чистоты биологических молекул – было, по-видимому, неизбежным. Мы обсудим здесь предмет, на наш взгляд, гораздо более интересный, предмет, завораживающий своей красотой и своей регулярностью, предмет, сконструированный из реальных молекул, но так, что его свойства могут быть описаны в совершенно абстрактных терминах.

О второй Великой Молекулярной Революции (возникновении генетического кода), которая обеспечила колоссальные селективные преимущества обладателям операционной системой молекулярной памяти, не так легко сказать «однажды достигнутая». Возникновение хиральной чистоты – процесс практически одноактный – в том смысле, что она либо есть (и тогда жизнь оказывается возможной), либо ее нет. Возникновение компартментализации – в том же смысле – не имеет промежуточных этапов: она либо есть, либо ее нет. Существование какой бы то ни было клеточной стенки и ее дальнейшая эволюция – события принципиально одноплановые. Генетический же код – в том смысле, какой в это понятие вкладывают учебники – просто не мог возникнуть сразу, «однажды». То, что обычно называется кодом – это предмет договора, условность, вещь конвенциальная. В отношении генетического кода нет договаривающихся сторон, поэтому этот термин иногда характеризуется как метафора. Он должен быть совершенно естественным продуктом, предметом физикалистского подхода в рамках молекулярно-биологической аксиоматики. В то же время – и мы это увидим далее – его организация очевидно выходит за эти рамки. Кроме того, он относится к двадцати белокобразующим аминокислотам, и его возникновение должно было, таким образом, пройти, по крайней мере, двадцать шагов, каждый из которых должен был учитывать не только пройденный уже путь, но и каким-то образом сообразовываться с дальнейшими. Более того, совершенно неочевидна и химия этих процессов. Необсуждаемым в учебниках свойствам генетического кода и выводам, которые за ними могут стоять, и посвящена вторая часть этой книжки, для которой первая, заканчивающаяся следующей главой, – просто необходимое вступление).

…………………

Несколько слов о номере этой главы. Несмотря на обещание не касаться более ставших скучными рассуждений относительно числа 111, помещаемых в конец очередной главы, Автор – с массой извинений – еще один раз напоминает о нем. В четырнадцатиричной системе счисления (таблица в Главе 1 [II]) этому числу соответствует информационная сигнатура 11114. Почему мы опять о ней вспомнили – да еще в такой экзотической системе счисления – автор попытается пояснить позднее.

Данный текст является ознакомительным фрагментом.