Происхождение жизни
Происхождение жизни
Как уже отмечалось, теория биохимической эволюции является единственной теорией в рамках научной методологии по вопросу происхождения жизни. Впервые она была предложена А. И. Опариным (1894–1980) в 1924 году. В дальнейшем автор неоднократно вносил в нее поправки и дополнения.
В соответствии с теорией А. И. Опарина биохимическая эволюция проходила в несколько стадий. Первые ее этапы представляли собой химическую эволюцию: образование углеводородов, затем полимеров и, наконец, обособленных систем органических веществ, отделенных от внешней среды мембранами – протобионтов. Именно протобионты совершают эпохальный шаг, преобразуясь в первые живые организмы. С этого момента начинается биологическая эволюция.
Теорию биохимической эволюции разрабатывали в дальнейшем многие ученые: Дж. Холдейн и Дж. Бернал (Англия), С. Миллер, С. Поннаперума, С. Фокс (США) и другие.
Разными авторами предлагались различные «кандидаты» на роль «первичной» биомолекулы. Вначале выбор шел между молекулами белка или ДНК. В настоящее время большинство биохимиков-эволюционистов видят в этой роли молекулу РНК. Недавно открытая каталитическая активность РНК позволяет предположить, что на определенной стадии биохимической эволюции РНК совмещала функции переноса информации и катализа (Gesteland R. [et al.], 1999). Согласно такому сценарию, вначале молекулы РНК выполняли каталитическую функцию для самокопирования, а затем стали синтезировать белки. В ходе биохимической эволюции РНК передала каталитическую функцию белкам, а роль хранителя генетической информации – ДНК. За РНК осталась функция посредника в процессе реализации генетической информации, которую она выполняет по сей день.
Этапы химической эволюции получили неплохое экспериментальное подтверждение. Однако судьбоносный шаг к явлению жизни оставляет еще много сложных вопросов. Решающую роль в возникновении жизни, вероятно, сыграла способность нуклеотидов к специфическому спариванию. Благодаря этой способности, синтезированный полимер нуклеотидов мог служить матрицей для новой комплементарной цепи.
Таким образом, 3,5–4 млрд лет назад на Земле, возможно, возникли самореплицирующиеся системы нуклеиновых кислот, и в настоящее время механизм матричного синтеза занимает центральное место в процессах передачи информации в биологических системах.
Для обеспечения структурных и функциональных потребностей будущего организма идеально подходят другие молекулы – белки, отличающиеся удивительным разнообразием. Взаимосвязь белков и нуклеиновых кислот стала вторым важным шагом на пути биохимической эволюции. Единство генетического кода всех ныне живущих организмов показывает, что такой «симбиоз» произошел на самых ранних стадиях.
И, наконец, третьим критическим моментом биохимической эволюции было возникновение мембран, определяющих пространственную изоляцию «предклеток». Некоторые авторы считают стадию образования мембран началом пути, ведущего к живой клетке (Morowitz Н., 1992). Идеальным кандидатом на роль первичной мембраны служат липидные пузырьки, возникающие самопроизвольно, в соответствии с законами физики и химии.
Конечно, такая схема является только предположительной. Даже разработанная в теории «минимальная клетка» (в природе к ней ближе всего стоят клетки микоплазмы) представляет собой исключительно сложную систему. Не согласуются между собой результаты молекулярно-генетических и палеонтологических исследований. Согласно расчетам, жизнь на Земле должна была возникнуть около 2 миллиардов лет назад, однако обнаруженные углеродистые включения заставляют предположить, что она уже существовала около 3,8 млрд лет назад. Проблема возникновения жизни остается одной из самых волнующих загадок мироздания. Для ее разрешения в настоящее время весьма перспективным представляется системный подход.
Немецкий биохимик М. Эйген, лауреат Нобелевской премии 1967 года, стал автором теории молекулярной самоорганизации добиологических процессов. Она позволяет применить представления кибернетики к эволюции живых организмов.
М. Эйген заметил, что ферментативные реакции могут формировать сложные сети и замкнутые циклы. Эти циклы, в которых одна химическая реакция обусловливает протекание другой, он назвал гиперциклами. Сети и циклы весьма устойчивы, способны к самовоспроизведению и даже к коррекции ошибок, т. е. они способны нести информацию. Информация в теории М. Эйгена оценивается по способности макромолекул к самовоспроизведению. Он показал, что самовоспроизведение возможно до образования генетических структур, что возникновение жизни на Земле стало возможным благодаря процессу нарастающей организации неравновесной химической системы с образованием многочисленных петель обратной связи.
Модель М. Эйгена хорошо согласуется с представлениями И. Пригожина для открытых систем. Она является одной из наиболее привлекательных гипотез возникновения жизни.
Данный текст является ознакомительным фрагментом.