Поиск и изучение нуклеиновых кислот

We use cookies. Read the Privacy and Cookie Policy

Поиск и изучение нуклеиновых кислот

Проблемой нуклеиновых кислот занимался еще в 1868 году швейцарский химик Ф. Мишер, открывший в клетках гноя особое вещество, названное им «нуклеином», поскольку оно встречалось исключительно в клеточном ядре (nucleus — ядро). Это была ДНК. Она находится в каждой из двух биллионов клеток человеческого организма и в клетках всех прочих организмов. Мы знаем также, что ДНК присутствует и в некоторых бактериофагах и вирусах. Спустя 30 лет в клетках дрожжей открыли другую нуклеиновую кислоту, ее мы теперь сокращенно обозначаем РНК.

Во всех клеточных ядрах организма (фото 47) количество ДНК всегда одинаково.

ДНК — длинная макромолекула, основными структурными элементами которой являются нуклеотиды. Каждый нуклеотид состоит из 29–35 атомов. Нуклеотид построен из трех структурных элементов: органического основания, углевода и фосфорной кислоты. Углевод, который в ДНК называется дезоксирибозой, и фосфорная кислота во всех нуклеотидах одинаковы; органических оснований в нуклеотидах несколько: аденин (А), тимин (Т), гуанин (Г) или цитозин (Ц).

РНК отличается от ДНК тремя основными особенностями: вместо дезоксирибозы содержит близкий к ней сахар — рибозу; вместо тимина (Т), присутствующего только в ДНК, — урацил (У), и наконец, в отличие от ДНК, являющейся двойной цепью, напоминает простую длинную цепь, в которой нуклеотиды расположены последовательно в ряд. До сих пор в этом отношении известно только единственное исключение — бактериофаг с шифром ?X174 имеет ДНК в виде простой, а не двойной цепи.

Простая цепь РНК состоит из чередующихся молекул рибозы и остатков фосфорной кислоты, причем к каждой молекуле рибозы перпендикулярно оси цепи присоединяется одно из четырех нуклеотидных оснований — У, Г, Ц или А. Часть молекулы РНК изображена в виде следующей схемы:

где Р означает рибозу, Ф — остаток фосфорной кислоты, У, Ц, А и Г — различные нуклеотидные основания.

Изучение структуры ДНК продолжалось долгие годы начиная с 20-х годов, когда о ДНК было известно примерно столько же, сколько мы сейчас рассказали.

В начале 50-х годов профессор Е. Чаргафф и его коллеги установили, что в молекуле ДНК определенно взаимосвязаны два спаренных основания, причем всегда аденин с тимином (А — Т), а гуанин с цитозином (Г — Ц). Количественные отношения между этими парами в молекуле ДНК одного и того же биологического вида всегда постоянны, но различаются у разных видов. Чем более родственны виды между собой, тем более сходны и количественные отношения этих пар в ДНК и наоборот, чем меньше родства между видами, тем эти отношения менее сходны.

Приблизительно в это же время американский биохимик Л. Полинг исследовал вместе со своим сотрудником Р. Кори структуру белка. Они установили, что полипептиды (ряды связанных в цепи аминокислот) образуют некоторое подобие спирали, так называемую ?-спираль.

Вскоре после этого англичанин М. Уилкинс и другие исследователи доказали, что и макромолекулы ДНК имеют такую же спиральную структуру. Американец Дж. Уотсон и англичанин Ф. Крик на основании этих и других данных построили структурную модель молекулы ДНК. За эту, по существу, новаторскую работу Уотсон, Крик и Уилкинс были удостоены в 1962 году Нобелевской, премии по медицине и физиологии. Уотсон и Крик в своей модели наглядно изобразили структуру молекулы ДНК в виде двойной спирали. Внешние витки этой макромолекулы образуют цепи, в которых закономерно чередуются молекулы дезоксирибозы (Д) и фосфорной кислоты (Ф). Цепи как бы намотаны на внутренний «цилиндр», состоящий из спаренных оснований А — Т и Г — Ц. С наружной стороны основания присоединены к дезоксирибозе другой цепи. Между собой основания связаны водородными мостиками, известными по многим другим соединениям. Внутреннюю организацию молекулы ДНК можно изобразить следующей схемой:

Обе цепи обхватывают внутренний цилиндр так, что их витки всегда находятся на его противолежащих сторонах. Каждый поворот цепей на 360° размещает новые 10 пар нуклеотидов. Модели молекул ДНК с их двойными спиралями наглядно изображены на прилагаемом рисунке.

Количество нуклеотидов в ДНК возрастает с усложнением организмов. Бактериофаги содержат в своих молекулах ДНК около 5000—10 000 нуклеотидов, но у бактерий их уже около 5 000 000. Каждая клетка человеческого организма содержит до 800 000 молекул ДНК, и в каждой из них имеется около 40 000 нуклеотидов.