Рассказ Дрозофилы

We use cookies. Read the Privacy and Cookie Policy

Рассказ Дрозофилы

В 1894 году Уильям Бэтсон, один из отцов генетики, опубликовал книгу “Материалы по изучению прерывистой изменчивости в происхождении видов”. Он собрал впечатляющий, немного жутковатый список генетических отклонений и рассмотрел их с точки зрения эволюции. В списке были лошади с расщепленными копытами, антилопы с одним рогом – посередине лба, трехрукие люди и жук с пятью конечностями с одной стороны. Бэтсон ввел термин “гомеозис” для определенного типа генетических вариаций. Гомео- по-гречески “одинаковый”, а гомеозисная мутация (во времена Бэтсона термина “мутация” еще не было) – это такая мутация, в результате которой одна часть тела возникает на месте другой.

Бэтсон описал жука-пилильщика с ногой на месте антенны. Каждый случай такой заметной аномалии, указывал ученый, содержит подсказку, как животные развиваются в норме. Этот случай гомеозиса – нога вместо антенны – был позднее открыт у плодовых мушек (Drosophila). Эту мутацию назвали антеннопедией. Дрозофила (“любительница росы”) уже давно была любимым животным генетиков. И хотя не стоит путать эмбриологию с генетикой, следует отметить, что недавно дрозофила стала важной фигурой не только в генетике, но и в эмбриологии.

Эмбриональным развитием управляют гены, но происходить это может двумя разными способами. В “Рассказе Мыши” мы говорили о них как о чертеже и рецепте. Строитель строит дом согласно чертежу. Когда повар готовит пирог, он не кладет крошки и изюминки в определенные места, а определенным способом добавляет ингредиенты, просеивая их, перемешивая, взбивая или нагревая. В учебниках по биологии ДНК нередко описывается – ошибочно! – как чертеж. Развитие эмбриона не имеет ничего общего с чертежом. ДНК – не описание плана строения тела. Возможно, на какой-нибудь иной планете существа и развиваются согласно эмбриологическим “чертежам”, но мне трудно это представить. Это была бы совсем другая жизнь. На Земле эмбрионы развиваются по “рецепту”. Можно привести другую аналогию, которая в определенном смысле подходит даже лучше рецепта: эмбрионы похожи на оригами.

Аналогия с оригами уместнее для раннего эмбриологического развития, чем для позднего. Основной план строения тела закладывается путем серии складываний и инвагинаций слоев клеток. Позднейшие стадии развития большей частью представляют собой рост. Эмбрион “надувается”, как воздушный шар. Однако части эмбриона “надуваются” с разной скоростью и под строгим контролем. Это явление известно как аллометрия. В “Рассказе Дрозофилы” мы рассмотрим в основном раннюю, “оригамную” стадию развития, а не позднюю, инфляционную.

Клетки в эмбрионе не выкладываются по порядку, как кирпичи, согласно чертежу. Эмбриональное развитие определяется поведением клеток. Клетки притягивают или отталкивают другие клетки. Они изменяют форму различными способами. Они синтезируют вещества, которые могут распространяться, влиять на другие клетки, даже находящиеся на расстоянии. Иногда клетки выборочно погибают, освобождая место для других. Как термиты, кооперирующиеся для постройки термитника, клетки “знают”, что им делать, благодаря соседним клеткам, и градиентам концентрации химических веществ. Все клетки эмбриона содержат одни и те же гены. Поэтому различия в поведении клеток обусловливают не гены. Клетки различаются набором генов, определяющих различия в содержании белков – продуктов этих генов.

На самом раннем этапе эмбрионального развития клетка должна “узнать”, в каком положении она относительно двух осей эмбриона: передне-задней и дорсовентральной. “Узнать” – в первую очередь означает, что поведение клетки определяется ее позицией относительно химических градиентов по каждой из двух осей. Такие градиенты возникают еще в яйцеклетке и, значит, находятся под контролем материнских генов, а не ядерных генов оплодотворенного яйца. Например, в материнском генотипе дрозофилы существует ген bicoid, который экспрессируется в клетках-“кормильцах”, питающих яйца. Белок, который синтезирует ген bicoid, доставляется в яйцо, где он распределяется градиентно от одного конца к другому. Получившийся градиент концентрации этого белка (и других подобных веществ) определяет передне-заднюю ось эмбриона. Сходные градиенты, расположенные перпендикулярно, определяют дорсовентральную ось.

Эти маркирующие концентрации сохраняются в клетках, которые образуются при последующих делениях яйца. Первые несколько делений происходят без добавления нового материала и являются неполными: образуется много ядер, но они не полностью разделяются клеточными стенками. Такую многоядерную “клетку” называют синцитием. Позднее формируются перегородки, и эмбрион становится по-настоящему клеточным. В ходе этого процесса сохраняются исходные химические градиенты. Поэтому клеточные ядра в разных частях эмбриона окружены разными концентрациями ключевых веществ, соответствующих исходным градиентам осей яйцеклетки. В результате в разных клетках включаются разные гены (теперь речь, конечно, идет о генах не матери, а эмбриона). Так начинается дифференциация клеток, и тот же принцип определяет дальнейшую дифференциацию на более поздних стадиях развития. Исходные градиенты, заданные материнскими генами, уступают место новым, более сложным, которые создаются собственными генами эмбриона. Последующие расхождения линий эмбриональных клеток приводят к дальнейшим дифференциациям.

Тело членистоногих разделено на клетки, а если увеличить масштаб, то на сегменты. Они выстроены продольно от передней части головы до конца брюшка. У насекомых шесть головных сегментов: на втором расположены антенны, после чего следуют сегменты мандибул (челюстей) и других частей ротового аппарата. Сегменты головы взрослой особи находятся слишком близко друг к другу, чтобы было заметно их передне-заднее расположение. Но порядок головных сегментов можно увидеть у эмбриона. Три грудных сегмента (T1, T2 и T3) выстроены в линию, и каждый несет пару ног. На сегментах T2 и T3 обычно расположены крылья, но у дрозофил и других мух крылья только на T2. Вторая пара “крыльев” модифицирована в жужжальца – небольшие булавовидные органы на сегменте T3, которые играют роль миниатюрных гироскопов, нужных для управления движениями мухи. У некоторых ранних ископаемых насекомых было три пары крыльев, по одной на каждом грудном сегменте. За грудными сегментами располагаются более многочисленные брюшные сегменты (одиннадцать у некоторых насекомых, восемь у дрозофил, если мы учитываем гениталии на заднем конце тела). Клетки благодаря особым контролирующим генам, Hox-генам, “знают”, в каком они сегменте, и ведут себя соответственно.

Все было бы просто, если бы я мог сообщить вам, что в каждом сегменте есть по одному Hox-гену, который работает во всех клетках данного сегмента. Еще лучше, если бы Hox-гены были выстроены вдоль хромосомы в том же порядке, что и сегменты, в которых работают. В действительности все не настолько красиво, но довольно близко к этому. Hox-гены действительно выстроены в правильном порядке вдоль хромосомы, и это замечательный подарок природы, учитывая то, что нам известно о работе генов. Однако количество Hox-генов не соответствует числу сегментов: этих генов всего восемь. Кроме того, есть еще одно осложнение. Сегменты взрослого насекомого не совсем соответствуют парасегментам личинки. Не спрашивайте меня, почему (наверное, у Творца был выходной). Однако каждый сегмент взрослого насекомого состоит из задней половины одного личиночного парасегмента и передней половины следующего. (Я буду использовать здесь слово “сегмент” в значении “(пара)сегмент” личинки.) Теперь о том, как восемь Hox-генов обслуживают около семнадцати сегментов: отчасти это происходит благодаря химическим градиентам. Каждый Hox-ген экспрессируется преимущественно в одном сегменте, но также и в позади идущих сегментах, причем концентрация его снижается по мере движения назад. Сравнивая химические продукты нескольких вышерасположенных Hox-генов, клетка “узнает”, в каком она сегменте.

Восемь Hox-генов собраны в два генных комплекса (кластера), физически разделенных на одной хромосоме. Это комплекс Antenna-pedia и комплекс Bithorax. (Оба названия крайне неудачны. Комплекс генов называют по одному члену этого комплекса, значение которого не больше, чем значение остальных. Хуже того, названия генов, как правило, определяются эффектом, который наблюдается при их нарушении, а не их нормальной функцией. Было бы уместнее назвать их, например, передним Hox-комплексом и задним Hox-комплексом.)

Кластер Bithorax состоит из трех последних Hox-генов, которые названы Ultrabithorax, Abdominal-A и Abdominal-B. Они отвечают за формирование задней части тела животного. Ultrabithorax экспрессируется с сегмента № 8 до заднего конца тела. Abdominal-A экспрессируется с сегмента № 10 до конца, а Abdominal-B – с сегмента № 13 до конца. Продукты этих генов синтезируются в уменьшающейся концентрации по мере движения к заднему концу тела животного от отправных точек. Поэтому, сравнивая концентрации продуктов трех Hox-генов, клетка в задней части личинки может узнать, в каком сегменте она находится, и вести себя соответствующим образом. Примерно то же происходит в переднем конце тела личинки, где работают пять Hox-генов из кластера Antennapedia.

Итак, назначение Hox-гена – определять свое положение в теле и информировать об этом другие гены в той же клетке. Теперь мы знаем достаточно, чтобы перейти к гомеозисным мутациям. Когда в работе Hox-гена что-то не так, клетки сегмента получают неверную информацию о своем местоположении, и тогда они выстраивают тот сегмент, в котором, как им кажется, они находятся. В результате получается, например, нога, растущая на сегменте, на котором в норме растет антенна. Это вполне логично. Клетки любого сегмента способны собрать любой другой сегмент. Почему бы и нет? Инструкции хранятся в клетках каждого сегмента. В нормальных условиях Hox-гены включают правильные инструкции. Как верно подозревал Бэтсон, гомеозисная аномалия служит ключом к разгадке нормальной работы системы.

У мух, в отличие от большинства насекомых, в норме лишь одна пара крыльев, дополненная парой гироскопических жужжалец. Гомеозисная мутация Ultrabithorax вводит в заблуждение клетки третьего грудного сегмента, заставляя их считать, будто они во втором грудном сегменте. Поэтому они кооперируются для создания дополнительной пары крыльев вместо пары жужжалец. Известен мутант мучного хрущака (Tribolium), у которого антенны на всех пятнадцати сегментах. Кажется, все клетки решили, что они во втором сегменте.

Мы подошли к самой удивительной части “Рассказа Дрозофилы”. После того как Hox-гены были обнаружены у дрозофилы, их стали находить не только у других насекомых, но почти у всех других животных, включая человека. И хотя звучит это неправдоподобно хорошо, у других животных эти гены чаще всего выполняют те же самые функции, вплоть до информирования клеток о том, в каком сегменте они находятся. Более того, эти гены расположены на хромосоме в одном и том же порядке. А теперь послушаем рассказ о млекопитающих, а именно о лабораторной мыши – коллеге дрозофилы.

Млекопитающие, как и насекомые, имеют сегментированный (блочный) план строения тела, который затрагивает позвоночник и связанные с ним структуры. Каждый позвонок можно рассматривать как соответствующий одному сегменту, но, помимо позвоночника, в теле есть и другие сегментированные структуры. Кровеносные сосуды, нервы, блоки мышц, хрящевые диски и ребра: все эти органы следуют повторяющемуся блочному плану. У млекопитающих, как и у дрозофилы, блоки расположены теми же продольными сериями. Как и у дрозофилы, составляющие тело модули единообразны, хотя и различаются своей спецификой. И, подобно телу насекомых, которое подразделяется на голову, грудь и брюшко, тело позвоночных состоит из шейного, грудного (верхняя часть позвоночника с ребрами), поясничного (нижняя часть позвоночника без ребер) и хвостового отделов. Как и у дрозофилы, клетки, из которых сложены кости, мышцы, хрящи и так далее, должны “знать”, в каком отделе они находятся. Узнают они это от Hox-генов, явно соответствующих Hox-генам дрозофил. Правда, те далеко не идентичны, и это неудивительно, учитывая возраст сопредка № 26. И, опять-таки, как у дрозофилы, Hox-гены расположены на хромосоме в определенном порядке. Модульная организация тела позвоночных очень отличается от таковой насекомых, и нет причин считать, будто их общий предок, встреченный нами на рандеву № 26, имел сегментированное тело. Тем не менее, анализ Hox-генов показывает, что существует глубинное сходство в плане строения тела насекомых и позвоночных, позаимствованном у сопредка № 26. Этот общий план угадывается в вариациях даже у несегментированных животных.

У мыши Hox-гены располагаются не на одной хромосоме. У нее имеется четыре разных серии Hox-генов: а на хромосоме № 6, b на хромосоме № 11, c на хромосоме № 15, d на хромосоме № 2. Их сходство указывает на то, что они возникли в результате дупликации: ген а4 соответствует b4, который соответствует С4, который соответствует d4. Кроме того, имеются и делеции: некоторые участки в каждой серии отсутствуют. Так, гены а7 и b7 соответствуют друг другу, однако в сериях c и d нет претендентов на вакансию № 7.

В том случае, если на один сегмент приходится два, три или четыре различных Hox-гена, их действие складывается. И, как и у дрозофилы, мышиные Hox-гены наиболее заметно проявляют себя в первом (переднем) сегменте тела, а чем ближе к заднему концу, тем экспрессия становится меньше.

За малыми исключениями, каждый из восьми Hox-генов дрозофилы сильнее походит на аналогичный ген в мышиных сериях, чем на семь других генов в “своей” серии. К тому же порядок их расположения на хромосомах более или менее одинаков. Для каждого из восьми генов дрозофилы имеется по меньшей мере одно соответствие среди тринадцати мышиных генов. Как объяснить такое точное совпадение генов мыши и дрозофилы? Только общим происхождением – от сопредка № 26, прародителя и первичноротых, и вторичноротых. Следовательно, огромное множество животных – это потомки существа, в организме которого имелись Hox-гены, расположенные на хромосоме в том же порядке, что у современной дрозофилы и позвоночных. Подумать только!

Повторюсь: отсюда не следует, что тело сопредка № 26 было сегментированным (скорее всего, это не так). Однако у него явно присутствовал некий морфологический градиент от головы к хвосту, организованный серией гомологичных Hox-генов. Поскольку сопредки давно мертвы и уже ничем не способны помочь молекулярной биологии, любопытно поискать Hox-гены у их потомков. Сопредок № 23 – наш общий с ланцетниками прародитель. Учитывая, что у далекой в родственном отношении дрозофилы есть та же передне-задняя серия генов, что у млекопитающих, было бы удивительно, если бы у ланцетников ее не оказалось.

Этим вопросом занялся Питер Холланд и его коллеги. Полученные результаты полностью оправдали затраченные усилия. Оказалось, что блочный план строения тела ланцетника управляется четырнадцатью Hox-генами, которые выстроены в правильном порядке вдоль хромосомы. Как и у дрозофилы (но не как у мыши), эти гены образуют одну серию – а не четыре параллельных. Предположительно весь кластер когда-то дуплицировался четыре раза на линии, ведущей от сопредка № 23 к современным животным, что сопровождалось случайными потерями некоторых генов.

Hox-гены найдены у всех изученных животных, кроме гребневиков и губок (рандеву №№ 29, 31). Они есть у морских ежей, мечехвоста, креветок, моллюсков, кольчатых червей, кишечнодышащих, асцидий, нематод и плоских червей. Это неудивительно, учитывая, что все эти животные произошли от сопредка № 26. Поэтому у нас есть веское основание полагать, что у сопредка № 26 и его потомков – дрозофилы и мыши – тоже были Hox-гены.

Стрекающие, например гидра (см. рандеву № 28), радиальносимметричные, то есть у них нет ни передне-задней, ни дорсовентральной оси. У них есть лишь орально-аборальная ось. Что именно у них соответствует длинной оси, непонятно, поэтому неясно, чего ждать от их Hox-генов. Было бы здорово, если бы они предназначались для определения орально-аборальной оси, но мы не знаем, так ли это. У большинства кишечнополостных два Hox-гена, а не 8, как у дрозофилы, и не 14, как у ланцетника. Принято считать, что один из двух генов похож на передний комплекс дрозофилы, а другой – на задний. У сопредка № 28, который объединяет нас с кишечнополостными, предположительно было так. У его потомков один из двух генов несколько раз дуплицировался и образовал кластер Antennapedia, а второй – кластер Bithorax. Именно так гены размножаются в геноме (см. “Рассказ Миноги”). Однако чтобы понять, какую роль играют эти два гена в формировании тела кишечнополостных, необходимы дальнейшие изыскания.

Иглокожие, как и кишечнополостные, обладают радиальной симметрией, однако у них эта симметрия вторична. Сопредок № 25, который объединяет их с позвоночными, был двусторонне-симметричным, как червь. У иглокожих число Hox-генов варьирует: например, у морских ежей их десять. Что делают эти гены? Не скрываются ли в теле морской звезды следы предковой передне-задней оси? Или Hox-гены работают последовательно вдоль каждого из пяти ее лучей? Звучит вполне логично. Мы знаем, что Hox-гены экспрессируются в задних и передних конечностях млекопитающих. Я не хочу сказать, что Hox-гены от 1 до 13 экспрессируются по порядку от плеча до кончиков пальцев. Все гораздо сложнее, потому что конечность позвоночного не составлена из блоков. Она устроена так: сначала одна кость (плечевая в руке, бедренная в ноге), затем две кости (лучевая и локтевая в руке, большая и малая берцовые в ноге) и много маленьких косточек, последние из которых составляют пальцы рук и ног. Веерное расположение костей унаследовано от рыб и не сводится к прямолинейности Hox-генов. Однако Hox-гены все же участвуют в развитии конечностей позвоночных.

Поэтому не было бы удивительно, если бы Hox-гены экспрессировались в лучах морской звезды или офиуры (даже морских ежей можно представить как морские звезды, лучи которых завернулись вверх и, соединившись, сложили пятиконечный свод). Более того, лучи морских звезд, в отличие от наших рук и ног, имеют модульный план строения. Амбулакральные ножки с их гидравлической системой представляют собой блоки, которые повторяются двумя параллельными рядами вдоль каждого луча: как раз то, что нужно для экспрессии Hox-генов! А щупальца офиур и вовсе выглядят как пять червяков.

Гексли писал о “вечной трагедии науки – неприглядные факты убивают красивую гипотезу”. Факты касательно Hox-генов иглокожих, пожалуй, не назовешь неприглядными, однако они не укладываются в красивую схему. Здесь происходит нечто, неожиданно отличающееся красотой. У иглокожих крошечные двустороннесимметричные личинки, плавающие в планктоне. Донные взрослые особи с пятисторонней радиальной симметрией не развиваются из личинки. Они начинают формироваться в виде миниатюрной взрослой особи внутри тела личинки. Эта особь растет до тех пор, пока остальная часть личинки не будет отброшена. Hox-гены у растущей особи экспрессируются в правильном линейном порядке, но не вдоль лучей. Порядок экспрессии следует круговым маршрутом вокруг тела маленькой взрослой особи. Иными словами, если представить Hox-ось в виде “червя”, то у иглокожих не будет пяти “червей” – по одному на луч. У них лишь один “червь”, скрученный в кольцо внутри личинки. На переднем конце “червя” вырастает луч № 1, на заднем конце – № 5. Поэтому гомеозисная мутация у морской звезды должна приводить к появлению избыточных лучей. Так оно и есть, и мутантные морские звезды с шестью лучами описаны в книге Бэтсона. Существуют также виды морских звезд, имеющих гораздо большее число лучей. Предположительно они эволюционировали от предков с гомеозисными мутациями.

Hox-гены не обнаружены ни у растений, ни у грибов, ни у одноклеточных организмов, которых мы называем простейшими. Однако здесь мы сталкиваемся с терминологической проблемой: Hox- образовано от homeobox, однако Hox-гены – это не то же, что гены гомеобокса. Это подтип генов гомеобокса. У растений и грибов есть гены гомеобокса, но нет Hox-генов. Приставка гомео- образована от придуманного Бэтсоном слова “гомеозис”, а “бокс” указывает на блок из 180 пар нуклеотидов, который есть во всех генах гомеобокса. Он, собственно, и представляет собой диагностическую последовательность 180 пар нуклеотидов, а ген гомеобокса – это ген, который содержит последовательность гомеобокса на каком-нибудь участке. Название Hox используется лишь для линейных кластеров генов, которые определяют положение на передне-задней оси тела животного и которые гомологичны почти у всех животных.

Из генов гомеобокса первым было открыто семейство Hox-генов. Сейчас известно множество других родственных семейств. Так, существует семейство генов ParaHox, которое впервые было выявлено у ланцетника, но которое, опять-таки, встречается у всех животных, кроме (на сегодняшний день) гребневиков и губок. Судя по всему, ParaHox-гены родственны Hox-генам в том смысле, что они расположены в том же порядке, что Hox-гены, и соответствуют им. Они явно возникли путем дупликации предкового набора генов, из которого образовались Hox-гены. Другие гены гомеобокса меньше связаны с Hox- и ParaHox-генами и образуют отдельные семейства. Гены семейства Pax найдены у всех животных. Самый заметный член этого семейства – Pax6, который соответствует гену дрозофилы, известному как e7. Я упоминал, что Pax6 дает клеткам сигнал к образованию глаза. Этот же ген отвечает за формирование глаз у столь различных животных, как дрозофила и мышь, притом что глаза у этих животных совершенно разные. Как и Hox-гены, Pax6 не сообщает клеткам, как строить глаза. Он лишь указывает место.

Сходный пример – небольшое семейство генов tinman. Они есть и у дрозофилы, и у мыши. У дрозофилы эти гены отвечают за формирование сердца и в норме экспрессируются как раз там, где должно находиться сердце дрозофилы. Вполне предсказуемо, что у мыши гены tinman указывают клеткам, где создавать сердце.

Гены гомеобокса очень многочисленны и подразделяются на семейства и подсемейства. Из “Рассказа Миноги” мы узнали, что человеческий альфа-глобин ближе, например, к альфа-глобину ящерицы, чем к человеческому же бета-глобину (который, в свою очередь, более близок к бета-глобину ящерицы). Точно так же tinman человека ближе к tinman дрозофилы, чем к Pax6 человека. Можно построить полное филогенетическое древо генов гомеобокса, параллельное филогенетическому древу животных, у которых эти гены есть. Оба древа одинаково надежны. Оба представляют собой настоящие генеалогические схемы, отражающие точки расхождений в определенные моменты геологической истории. На филогенетическом древе животных точки ветвления соответствуют событиям видообразования. В случае генов гомеобокса (или генов глобинов) точки ветвления соответствуют моментам дупликации генов в геномах.

Древо генов гомеобокса животных разветвляется на два крупных класса, AntP и PRD. В класс PRD входят Pax-гены и другие подклассы. Класс AntP включает Hox, ParaHox и другие подклассы. Помимо этих двух крупных классов генов гомеобокса животных, существуют другие гены гомеобокса, которые называют дивергентными: они найдены не только у животных, но и у растений, грибов и “простейших”.

Настоящие Hox-гены есть лишь у животных, и выполняют они одну функцию: предоставляют клеткам информацию о положении в теле – независимо от того, разделено оно на сегменты или нет. У губок и гребневиков Hox-гены пока не обнаружены, но это не значит, что их нет. Не удивлюсь, если выяснится, что они есть у всех животных. Это понравилось бы моим оксфордским коллегам Джонатану Слэку, Питеру Холланду и Кристоферу Грэму, предложившим новое определение животного. До сих пор животных определяли как противоположность растениям, но такое определение явно неполно. Слэк, Холланд и Грэм предложили новый критерий, который объединяет всех животных и исключает всех неживотных, таких как растения и простейшие. История с Hox-генами указывает, что животные – не пестрое собрание типов со своими планами строения тела. Если забыть о морфологии и рассматривать лишь гены, оказывается, что все животные демонстрируют незначительные вариации одной схемы. Как же приятно в наше время быть зоологом!

Данный текст является ознакомительным фрагментом.