10.3. Перспективы сосуществования

We use cookies. Read the Privacy and Cookie Policy

10.3. Перспективы сосуществования

Идея о том, что биосфера, в которой развивается разумная деятельность человека, превращается в ноосферу (сферу разума), наиболее глубоко развита в трудах В. И. Вернадского. Одним из условий ноосферы как единого организованного целого является гармоничная связь всех частей на разных уровнях и их согласованное взаимодействие. Что касается современной биосферы, то она пока только частично охвачена преднамеренными и целенаправленными воздействиями носителя разума — человечества. Поэтому в настоящее время можно говорить лишь о начальных этапах, о самом возникновении или рождении ноосферы, а до полного становления ее еще далеко [Будыко, 1984]. И увы, как все новое, рождается ноосфера в муках, и, по-видимому, мы сейчас переживаем один из наиболее тяжелых периодов ее рождения (см. материал предыдущего раздела).

Вселяет определенный оптимизм разработка международными организациями Всемирной стратегии охраны природы (в Советском Союзе она оглашена 5–6 марта 1980 г.). Она предназначена для правительственных, неправительственных, общественных и международных организаций в качестве руководства к мероприятиям по охране природы. На ее основе рекомендуется разработка национальных стратегий охраны природы в каждой стране. Особое место должно отводиться охране типичных для данного региона экосистем, центров эндемизма и эндемичных видов, существование которых находится под угрозой.

Так как главной причиной ухудшения окружающей среды и загрязнения биосферы являются технологии, то мы и рассмотрим перспективы их изменения в будущем по трем основным типам: энергетика, промышленность, сельское хозяйство. Сделаем попытку оценить, какие направления развития технологий являются наиболее экологичными, способными гармонично вписываться в окружающую среду.

Как всегда начнем с энергетики. В предыдущей главе мы достаточно подробно описали общие перспективы развития энергетики на ближайшие 20–100 лет. Предпочтение отдавалось «большой» энергетике термоядерного синтеза как самой экологичной, не дающей ни радиоактивного, ни химического загрязнения и не выделяющей CO2, приводящего к дополнительному тепловому загрязнению. Дело за «немногим»: нужно научиться управлять термоядерной редакцией. Однако, по имеющимся оценкам, стоимость решения этой задачи в десятки раз ниже расходов на вооружение; не будем забывать, что мы входим в ноосферу, т. е. сферу разума. «Малая» энергетика должна активно использовать энергию солнечного излучения, абсолютно экологичную.

Промышленное производство, включая разнообразнейшие химические синтезы, является одним из самых сильных загрязнителей. Эффективность современного производства, с точки зрения использования сырья остается крайне низкой: в готовом продукте содержится всего 2—10% от сырья по весу. Таким образом, до 98% от исходного сырья промышленность выбрасывает в окружающую среду, отсюда и понятно: чем интенсивнее хозяйство, тем больше рассеивается вредных веществ и тем выше их концентрация в среде обитания. Так, в начале 70-х годов развитые страны с населением, составляющим около половины человечества, имели долю в мировом загрязнении свыше 85%, т. е. почти в 7 раз более активно (на человеческую душу) загрязняли окружающую среду, чем развивающиеся страны. Семидесятые годы можно назвать годами упорядочивания отношений промышленности с биосферой. Если раньше отходы, не особенно беспокоясь, выбрасывали «за ворота» предприятия, то теперь часть их, особенно наиболее токсичная, перерабатывается, остальное тщательно рассеивается в окружающей среде. (Мы знаем из предыдущего, что грязь растет по всей биосфере.) Мечты о безотходных технологиях становятся все более настоятельными, идет лихорадочный поиск повышения степени замыкания производств. На этом пути имеется ряд метаморфоз, которые образно названы «мифом о безотходной технологии», или «псевдобезотходностью».

Рассмотрим один из примеров. Шлаки и шламы цветной металлургии, а их накапливается несколько сот миллионов тонн ежегодно, могут повышать качество стройматериалов. Казалось бы, выход найден: отходы одного производства стали ценным сырьем для другого. Но увы, опасность вредного биологического действия отходов цветной металлургии отнюдь не уменьшается от того, что они входят в состав строительных блоков. Просто опасность появляется в другом месте. Канцерогенность и аллергенность кадмия, никеля и других тяжелых металлов остается, и стройматериалы, особенно в жилищном строительстве, с повышенным содержанием тяжелых элементов просто недопустимы.

Можно привести примеры «революционных» идей этого типа и в других областях, в частности попытки использовать почвы под видом орошения как место утилизации неочищенных промышленных и бытовых стоков. Емкость почвы гораздо выше емкости воды, но и ее очистка и восстановление тоже гораздо сложнее. Недаром академик ВАСХНИЛ В.В.Егоров [1985] назвал такие предложения «дичайшими». Такие примеры, к сожалению, можно приводить еще и еще. Главное — не перебрасывать отходы с места на место, а организовать их глубокую переработку до соединений, безвредных для человека и биосферы. Может быть, самый главный вред от «псевдобезотходности» в том, что она тормозит сам технологический прогресс. В самом деле, отрасль, которая наработала горы отходов и сумела их «сбагрить в чужие руки», выступает уже не в качестве отравителя природы, а в достойной и благородной роли производителя и поставщика ценного сырья и даже получает за это экономические блага. Потребители отходов заинтересованы в бесперебойной поставке этого сырья, без изменения его свойств. «Так создается порочный круг, в основе которого лежит неверно понятый принцип безотходности... Безотходная технология необходима человеку. Но к ней ведет крутая лестница научных, технических и промышленных решений, которую нам ступень за ступенью еще предстоит одолеть»,— пишут Н.Ф.Реймерс и И.А.Роздин [1981, с. 15]. Очень верные слова! Мы не должны обольщаться безотходностью, она пока недостижима, и точнее говорить сейчас о «малоотходных» технологиях или об «экологически безвредных».

Ближайшей непосредственной задачей, стоящей перед человечеством, является интенсификация имеющихся и разработка новых путей и методов борьбы с загрязнением среды, включая активное очищение.

Наиболее существенным способом борьбы с загрязнением промышленного и индустриализованного сельского хозяйства является разработка специально создаваемых очистных сооружений, так называемых систем интенсивной очистки. Основную нагрузку в этих системах, особенно при очистке водных стоков, несут ассоциации микроорганизмов, способные утилизировать широкий спектр активных загрязнителей различного рода. При этом степень очистки особо ядовитых специализированных промышленных стоков с небольшим количеством ингибиторов сильного действия заметно возрастает, если используются специально отселекционированные штаммы микроорганизмов, способные инактивировать сильно ядовитые соединения. Однако, несмотря на высокие скорости метаболических процессов и широкие возможности регулирования обмена у микроорганизмов, практически невозможно организовать абсолютно полную очистку загрязнений в выходящих потоках жидкости, газов даже с учетом повышения степени замкнутости технологий. С приближением к полному очищению стоимость процесса очистки возрастает экспоненциально. Дополнительную доочистку, таким образом, приходится перекладывать на естественные, т. е. экстенсивные, процессы самоочищения в биосфере. Как уже неоднократно отмечалось, биосфера не справляется с ростом загрязнения и по ряду параметров происходит довольно быстрая его аккумуляция.

Эмпирически к настоящему времени нащупывается выход из очень сложной ситуации с растущим загрязнением среды. Он заключается в разработке промежуточных систем, играющих роль буфера между выходом интенсивной системы очистки и «входом» биосферы. Обычно это выделенный участок ранее существовавшей экосистемы, довольно большой по размерам, с ярко выраженной модификацией, произведенной человеком (например, в нашей стране мелиорированные лиманы на Черном море, рукава Волги, Дона, старицы Оби, Енисея с примыкающей территорией и т. д.). Увеличенный размер и уменьшенные скорости деструкции загрязнителей отличают такую сложную систему от интенсивных специализированных систем. Кроме того, такие буферные системы характеризуются разветвлением потоков, наличием циклов по ряду веществ и организацией биотического круговорота в гидро- и педосфере. Это сближает их с природными экосистемами, однако заданные функции самоочищения в них более специализированы и более интенсифицированы, чем в природе. Такие системы можно отнести к управляемым экологическим системам (УЭС), функционирование которых направлено на выполнение определенных функций, задаваемых человеком.

Сельское хозяйство, являясь одним из наиболее опасных загрязнителей окружающей среды, видимо, еще долго будет оставаться в этой неприглядной роли. Помимо эрозии почв почти по всей планете сельскохозяйственное производство широким потоком «распыляет» в биосфере специальные ядовитые соединения типа гербицидов и пестицидов. Увы, пока без таких соединений не обойтись, а химизация сельского хозяйства приносит большую выгоду. Выгода несомненна и сиюминутна, вред от применения пестицидов не столь очевиден, но, к сожалению, он долговременен. Мы знаем, как пестициды накапливаются в цепях питания, концентрируясь в организме человека в сотни тысяч и миллионы раз. Есть ли выход из создавшегося положения? Конечно, он связан с использованием биологических методов борьбы с вредителями. Эти методы имеют неоспоримые преимущества перед химическими. Вот главные: высокая избирательность действия, а следовательно, и безвредность для человека; возможность длительного существования действующего агента (например, растущей популяции организмов, паразитирующей на вредителе); меньшая вероятность появления устойчивых форм вредителя к патогенным организмам, чем к химикатам. Это последнее свойство особенно интересно в эволюционном плане, так как паразитирующая на вредителе и тем самым работающая на человека популяция быстро адаптируется к новым устойчивым вариантам хозяина. Это позволяет надолго сохранять вирулентность патогена [Печуркин, 1978].

Биологические методы пока намного дороже, чем химические, и не столь эффективны, производство биологических препаратов не налажено в больших масштабах, но и эти затруднения не принципиальны. Как мы говорили, эти сложности имеют технологическую природу, а значит, преодолимы. В наше время наиболее перспективно использование комбинированных способов борьбы: химия + биология с постепенным и неотвратимым наращиванием вклада биологии.

Очень сходна ситуация с использованием гербицидов: и здесь возникают сложности с химическим загрязнением среды. Хотя применение гербицидов для безотвальной обработки почвы позволяет избегать эрозии (но энергетически недешево!), их накопление в окружающей среде грозит большими неприятностями. Эффект аккумуляции более опасен, так как гербицидов для полного уничтожения целых армий сорняков требуется во много раз больше, чем пестицидов против вредителей. И здесь выход — в переходе к биологической системе земледелия (это мы обсуждали в предыдущем разделе). Потребуются более высокая культура земледелия, строгое выполнение правил агротехники и другие очевидные вещи.

Большой интерес для будущего представляет нетрадиционная форма ведения сельского хозяйства. Современное сельское хозяйство потому и неэффективно и громоздко, что оно рассеяно по поверхности планеты, «размазано» по большим площадям. К настоящему времени разработано несколько схем гигантских биофабрик (биотронов) с почти замкнутыми экологическими системами и с практически безотходным производством.

Другой вариант развития нетрадиционных вариантов сельского хозяйства связан с заменой дефицитного животного белка на белок одноклеточных или соевых растений. Производство дрожжевого белка вышло на рубеж 1 млн т/год в 80-е годы и продолжает нарастать. Перспективы его производства высоки из-за чрезвычайно больших скоростей прироста биомассы, которые в тысячи раз выше, чем скорости прироста животного белка. И в то же время аминокислотный состав, особенно по квоте незаменимых аминокислот, может быть аналогичен составу животного белка. Но пожалуй, одно из главных преимуществ — возможность его наработки на непищевом сырье: это сопутствующие парафины нефти; отходы древесины и сельскохозяйственных растений; низкокалорийные для сжигания бурые угли, торфы и др. Одна из проблем, связанных с очищением микробного белка от избыточных нуклеиновых кислот, тоже может быть отнесена к разряду технологических, т. е. решаемых. Энергетическая стоимость готового продукта на основе белков микроорганизмов, пока еще довольно высокая, может быть снижена в несколько раз по сравнению со стоимостью белков говядины, производимой традиционными путями. То же относится и к выработке белка из бобовых растений. Поэтому в 90-е годы в ряде развитых стран планируется заменить 10–25% мясо-молочных продуктов растительными и микробными белками, по виду, вкусу и качеству близкими к изделиям, сейчас выпускаемым из молока и мяса.

Со второй половины нашего столетия возросла активность математического прогнозирования глобального развития эколого-экономических процессов на нашей планете. И это не удивительно. Очень резко поднялись темпы изменения лика биосферы в наше время. Каждый год конца нашего века в этом смысле стоит десятилетия его начала, столетия средних веков и тысячелетий палеолита. Поэтому необходимость количественных прогнозов очевидна. Быстрое развитие вычислительной техники позволило осуществлять расчеты динамики развития биосоциальных систем в глобальных масштабах. До сих пор мы могли изучать закономерности биосферы как уникального объекта главным образом в ретроспекции. Экспериментировать с биосферой мы не можем и не имеем права. Имитационные эксперименты на ЭВМ являются единственной возможностью системных исследований биосферы.

Первые попытки формализовать глобальное описание экологических процессов предприняты по инициативе «Римского клуба» — неофициальной организации, одним из создателей которой стал известный итальянский предприниматель Аурелио Печчеи. В первых докладах «Римскому клубу» были проанализированы модели развития общества и среды в многомерном фазовом пространстве, компонентами которого были производственные, социальные и экологические процессы (модели Форрестера и Медоузов). Если результаты расчетов по первым моделям показались обескураживающими, типа полной остановки роста экономики и снижения числа людей на планете, то в дальнейшем удалось выявить условия сбалансированного развития экологии и экономики. При этом совершенно необходимым требованием было существенное увеличение трат на охрану окружающей среды во всех вариантах положительных прогнозов (модель «ГЕЯ», СССР).

Не имея возможности проанализировать детально результаты прогнозов развития человечества в биосфере, коротко остановимся на одном из них, самом ужасном — глобальном термоядерном конфликте. С точки зрения действия энергетических принципов этот вариант не биологичен, т. е. противоречит тенденции постоянного роста энергетики и умощнения круговорота в живой природе, так как связан с глобальными разрушениями и уничтожением большого числа живых и промышленных объектов. Однако законы социального развития могут иметь свое, в том числе и трагическое для человечества, обоснование.

И по радиоактивному, и по химическому загрязнению, и по изменению климатических условий (резкое похолодание) глобальный ядерный конфликт окажется гибельным для человека и ряда высших животных и растений если не в первом, то в последующих поколениях (см. [Природа, 1985, № 6, ряд статей советских ученых]). Сама жизнь на планете не будет уничтожена, но ей придется отступить на уже пройденные позиции. Хочется верить, что вступление в ноосферу состоится в ближайшем будущем и что оно будет связано с видом Homo sapiens.