10.2. Современная проблема: человек и биосфера

We use cookies. Read the Privacy and Cookie Policy

10.2. Современная проблема: человек и биосфера

Рост воздействия человека на биосферу непосредственно связан с ростом его численности. Разговоры о демографическом взрыве не просто красивые фразы. Увеличение числа людей на планете за последнее столетие носит именно взрывообразный характер (рис. 17). Еще более быстрыми темпами растет загрязнение окружающей среды, связанное с деятельностью человека. Есть данные, что около 80% всех видов загрязнения биосферы обусловлено энергетическими процессами, включая добычу, переработку и использование топлива. Резко возрастает с развитием разнообразных химических технологий количество трудноокисляемого органического мусора, производимого человеком. Уже к началу 70-х годов оно превысило астрономическую цифру — 2 · 1010 т/год [Ковда, 1975]. Этот показатель удваивается раз в 6—8 лет и к середине 80-х годов уже должен оцениваться величиной около 1011 т/год. Если принять среднее время распада этого трудно разложимого в природных условиях мусора за 10 лет, что явно превышает возможности биосферы, не «умеющей» разлагать незнакомые ей соединения типа пластмасс, то количество имеющегося мусора антропогенного происхождения составит 1012 т. А эта цифра уже приближается к общей массе живых организмов биосферы, уступая ей лишь в 2 раза, но зато в 5 раз превышает производство этой биомассы в год. Это первые данные, по которым активность человечества сравнялась с активностью биосферы. (В то время как биомасса человечества не превышает 0,01% от биомассы биосферы, а поток энергии, им используемый, достигает десятых долей процента.) Жаль, что глобальная активность человечества является лишь мусоропроизводящей, но таково состояние дел.

Рис. 17. Демографический взрыв [Агесс, 1982].

1 — Северная Америка; 2 — Латинская Америка; 3 — Австралия и Океания; 4 — Африка; 5 — СССР; 6 — Индия; 7 — Китай; 8 — остальная часть Азии.

Если нарисовать рост производства грязи человеком во времени, по аналогии с рис. 17, то «гриб» взрыва будет гораздо шире, да еще и с тлетворным душком.

Если говорить о воздействии человека на первичную продуктивность биосферы, то по ряду оценок в результате отчуждения земель для непроизводительных нужд (производство, города, дороги и замены лесных экосистем на сельскохозяйственные монокультуры, менее продуктивные по первичной продукции) уменьшение составляет 15—20% [Титлянова, 1979].

Рассмотрим подробнее влияние человека на основные резервуары и аккумуляторы веществ в биосфере: атмосферу, гидросферу и литосферу (точнее, ее верхнюю часть на суше — почву).

Состояние атмосферы. Что же происходит в атмосфере, а проще говоря, с тем самым воздухом, без которого нам не обойтись и пары минут? К сожалению, точный анализ этой сложной задачи невозможен. Поскольку наш подход связан с изучением потоков энергии, то большее внимание мы будем уделять влиянию энергетики на состояние и динамику процессов в атмосфере.

Из-за высокого уровня развития промышленности в Северном полушарии около 93% всех газовых выбросов в атмосферу сосредоточено именно здесь. Более того, около 90% этих выбросов приходится на 8— 10% поверхности суши, включающей часть Европы, Северной Америки и Японии. Следовательно, основная часть продуктов сгорания всех видов топлив выбрасывается в атмосферу на площади лишь около 3% от всей поверхности планеты. И на этой территории темными шлейфами дымов выделяются крупные города.

Одними из наиболее токсичных соединений, поступающих в атмосферу из технических источников, являются оксиды серы и азота. Согласно различным оценкам, техногенный выброс в атмосферу оксидов серы к началу 80-х годов достигал 70—100 млн т, а оксидов азота — около 20 млн т. Эти показатели примерно равны величине естественных выбросов этих элементов в атмосферу [Курьер ЮНЕСКО, 1985, № 5, с. 21]. Наиболее токсичным из газообразных оксидов является сернистый ангидрид. (По некоторым оценкам, если бы его не перерабатывали высшие растения, то за 20 лет все высшие животные погибли бы.) К сожалению, он составляет до 99% от выбросов сернистых соединений энергоустановками. Время жизни его в атмосфере может достигать нескольких десятков суток при сухом воздухе или уменьшаться до нескольких часов в присутствии воды. Он участвует в различных каталитических, фотохимических реакциях, переходит в сульфаты и, растворяясь в парах воды, образует серную кислоту. Сходным образом оксиды азота дают азотную кислоту. Получающиеся из-за этого кислотные дожди стали бичом Северного полушария.

Еще большую опасность представляет техногенный выброс в атмосферу металлов, особенно тяжелых. В естественных условиях поступление металлов в атмосферу — это ветровые переносы с поверхности и выбросы вулканов. Но все эти потоки отступают перед техногенными. Антропогенные источники приносят в атмосферу почти в 20 раз больше свинца, почти в 10 раз больше кадмия, более чем в 7 раз — цинка. По величине выбросов цинка, меди, кадмия всем вулканам Земли далеко до мусоросжигательных печей. Особую тревогу вызывает свинцовое загрязнение планеты. Связано оно также с энергетикой, но с малой, точнее, с выхлопами автомобильных двигателей.

Концентрация свинца растет во льдах не только Гренландии, но и Антарктики, в иле рек, морей, в теле животных, не исключая человека. Если в скелете первобытного человека было лишь 2 мг свинца, то в наших скелетах его в 50—100 раз больше. А ведь избыток свинца в организме очень опасен для здоровья.

Примеры накопления ядовитых веществ в атмосфере и из нее попадания в другие сферы можно, к сожалению, множить почти беспредельно. Достаточно вспомнить об авиационных методах применения различных химикатов в сельском и лесном хозяйстве. Неудивительно, что ДДТ был обнаружен в заметных количествах в снегах Антарктиды, где он никогда не применялся. Известно, что многие пестициды способны концентрироваться в пищевых цепях. Так, в цепях питания от морской воды через планктон, рачков и рыб смытые в воду химикаты (тот же ДДТ) в яйцах морских птиц могут аккумулироваться в миллион (!) раз.

Приведенных примеров вполне достаточно, чтобы видеть, что загрязнение атмосферы приняло угрожающие масштабы, и угрожают они прежде всего самому человеку. Чтобы избежать уже упоминавшегося бумеранг-эффекта, необходимо принимать серьезные меры по очистке газовых выбросов. По оценочным расчетам, снижение выбросов серы вдвое на обычных тепловых электростанциях в Европе стоило бы не менее 10% издержек на производство самой электроэнергии. Может показаться дорого, но что может быть дороже здоровья человека и биосферы?

Хорошим обнадеживающим примером того, что человечество в состоянии справиться с глобальным загрязнением, служит снижение радиоактивности на поверхности Земли. В начале 60-х годов, к моменту запрещения испытаний ядерного оружия в атмосфере, космосе и под водой, содержание радиоактивных стронция-90 и цезия-137 в продуктах питания возросло по сравнению с естественным фоном в несколько, вплоть до десятков, раз. Концентрация этих элементов в мышечной и костной тканях человека и высших животных тоже возросла и в некоторых регионах даже более чем в 100 раз. После прекращения испытаний, примерно в течение десятилетия, радиоактивный фон и содержание радиоактивных соединений в живых организмах вернулись к обычному естественному уровню, кроме отдельных мест, связанных с повышенной техногенной радиоактивностью.

Загрязнение гидросферы. Вода составляет основу жизни, и мы неоднократно обсуждали на страницах этой книги, что и в циклах вещества, и в энергетике всех живых существ она занимает ведущее место. Она пронизывает нашу жизнь на всех ее уровнях. И вдруг неожиданно для человечества оказалось, что мы практически не имеем чистой воды на планете. Недаром 80-е годы объявлены ООН десятилетием борьбы за чистую воду. Громадный Мировой океан на пути превращения в бессточную мусорную яму. Особенно загрязнен Атлантический океан.

С ростом энергетики, промышленных и сельскохозяйственных технологий резко возрастает потребность в чистой воде. Если ежегодно мировое потребление энергетических ресурсов составляет около 10 млрд т, то человек расходует около 10 млрд т воды ежедневно. И это не удивительно. Каждая тысяча киловатт мощности, выработанной тепловыми электростанциями, требует миллионы кубических метров воды в год. Для производства 1 т стали нужно более 100 т воды, 1 т произведенной соды «потребляет» 300 т воды, искусственного шелка — 400, бумаги — более тысячи, резины — 4000.

Одним из основных потребителей воды является сельское хозяйство. Например, чтобы вырастить 1 т пшеницы, требуется за вегетационный период 1500 т воды, 1 т риса — более 7 тыс. т, 1 т хлопка — около 10 тыс. т воды. С ростом технологий к 2000 г. без их качественного изменения может понадобиться практически весь речной сток. И здесь сельское хозяйство является одним из главных поставщиков различных ядовитых соединений типа пестицидов: гербицидов, инсектицидов, фунгицидов и пр.

Ухудшение качества воды уже теперь резко отрицательно сказывается на здоровье человека. По оценкам ВОЗ, 80% всех болезней в мире связано с неудовлетворительным качеством воды и нарушением санитарно-гигиенических норм из-за ее нехватки.

То самое «самоочищение» биосферы, которое выручало человека с незапамятных времен, начинает давать опасные сбои и именно в глобальном масштабе. Как бы ни казался велик наш «мокрый шарик», он не справляется с потоком загрязнения.

В последние годы как будто удалось остановить рост одного из наиболее опасных загрязнений Мирового океана — загрязнения нефтью. Нефть способна разливаться тонкой пленкой по поверхности воды, изолируя атмосферу от океана, образовывать комочки различных размеров, а наиболее тяжелые фракции могут опускаться на дно. Килограмм нефти может разлиться тонкой пленкой на площади до 1 га и тем самым погубить свыше 100 млн личинок рыб и многие виды зоопланктона. Тяжелое впечатление производят аварии супертанкеров при перевозках нефти. Но главный поток загрязнения связан со сбросами балластных и промывных вод танкеров. Этот поток был значительно уменьшен в связи с принятием международных постановлений и организацией контроля за их исполнением. В ряде больших портов построены специальные очистные станции для промывки танкеров, которые даже приносят прибыль. Однако угроза увеличения нефтяного загрязнения остается, так как в последние годы быстро увеличивается подводная добыча нефти и газа на шельфе.

Особую тревогу вызывает загрязнение внутренних водоемов, даже если они связаны непосредственно с океаном. Так, самым загрязненным из морей является Средиземное. Турецкие ученые пришли к выводу, что «Мраморное море гибнет». Вызывает обоснованную тревогу уровень загрязнения Балтийского и Северного морей. Без принятия эффективных мер результат может быть печальным. Медлить нельзя.

Определенный оптимизм внушают положительные примеры как в Европе, так и в Северной Америке, самых неблагополучных с этой точки зрения регионах. Достаточно вспомнить о том, что несколько чище стали Волга, Днепр, Великие озера, Темза. Разработка и использование специальных очистных систем, как показывает опыт, не только требуют затрат, но и могут самоокупаться и приносить прибыль.

Состояние литосферы (почвы). Верхний плодоносящий слой суши — почва — по площади, а по объему тем более существенно уступает гидросфере. Толщина слоя достигает всего лишь нескольких десятков сантиметров и только в черноземной зоне может возрастать до нескольких метров. Но именно этим слоем, его состоянием определяется жизнь человечества с самых ранних этапов развития.

В настоящее время практически все пригодные для земледелия места заняты человеком и переезжать просто некуда.

Действительно, площадь засеянных угодий составляет около 10% наземной части биосферы. А для сбора урожая и выпаса используется уже около 30% суши. Если учесть, что для хозяйственных нужд пригодно менее половины поверхности суши, а для интенсивного земледелия только около 25%, то и по этим оценкам человек практически занял всю пригодную территорию. Эра экстенсивного земледелия кончилась, оно постепенно переходит на рельсы интенсивного развития. Но этот путь требует другого подхода и другого типа мышления. Простая переэксплуатация земель быстро приводит к истощению почвы, ее эрозии, вплоть до полного уноса с пылевыми бурями. Хорошо известны пыльные бури на Великой американской равнине, в Средней Азии, на Северном Кавказе. В засушливых песчаных районах разрушение поверхностного слоя поразительно быстро приводит к появлению зыбучих песков и полному опустыниванию территорий. Идет «наступление» песков Сахары, растут пустыни Юго-Восточной Азии, Северной и Южной Америки. Ежегодно потери продуктивных земель по земному шару только вследствие опустынивания составляют 50—70 тыс. км2, а общая площадь «искусственных» пустынь, возникших в результате деятельности человека,— более 9 млн км2. (Эта величина уже сравнима с площадью нынешних посевных угодий.)

Может быть, еще большую опасность для решения продовольственных задач населения Земли представляет разрушение самых плодородных почв — черноземов в результате их переэксплуатации. Поскольку не менее половины всех черноземных земель расположено в Советском Союзе, то для нашей страны эта проблема приобретает самое злободневное звучание (из 300 млн га черноземных почв в Советском Союзе находится более 150 млн га). Если сопоставить со всей пахотной площадью (225—227 млн га), то черноземы составят около 70% ее. По разным оценкам, около 80% всей продовольственной продукции страны производится и выращивается на черноземах.

Учитывая большие запасы гумуса в черноземах, можно подсчитать, что количество энергии, запасенной в черноземах, в 20 раз и более выше, чем в суммарной биомассе высших и низших растений и животных этих ландшафтов. Впечатляющие данные. Можно провести некоторые аналогии с запасом в океане тепловой энергии, который тоже в 20 раз больше, чем ежегодный приход от Солнца. Следовательно, можно говорить о том, что, используя черноземы, и по энергетике, и по веществу мы живем за счет прошлых биосфер, как и при использовании органических ископаемых типа нефти и угля. Правда, в данном случае это не столь отдаленные времена — на образование чернозема требуется «всего лишь» сто-двести лет. Недаром великий русский почвовед В. В. Докучаев называл русский чернозем «главным основным богатством России, стоящим неизмеримо выше богатств Урала, Кавказа, богатств Сибири».

В настоящее время много энергии и вещества уносится с урожаями из черноземов. Например, чтобы компенсировать унос 30 ц зерна с 1 га или 100 ц картофеля, или 200 ц сахарной свеклы, нужно вносить эквивалентное количество органики, которое должно исчисляться тоже десятками центнеров на 1 га. При посевах монокультур необходимо именно внесение органики извне, но откуда ее столько взять? Для бездефицитного баланса гумуса по стране в целом требуется 1,5—3 млрд т органики в год, всего удобнее ее применять в форме твердого подстилочного навоза, а его «производство» в животноводстве достигает лишь 300—400 млн т в год, т. е. в 5—10 раз и меньше. Явное несоответствие потоков налицо. Поэтому необходимо иметь ориентацию на естественное возобновление плодородия почв, запасов гумуса «биологическим путем», а именно за счет сбалансированных севооборотов. Применение в них бобовых растений позволяет накапливать в почве столь дефицитный органический азот, другие компоненты питательных веществ пополняются корневой массой, которая остается в поле. Честь разработки севооборотов с использованием азотфиксирующих бобовых растений принадлежит нашей стране, достаточно вспомнить В.В.Докучаева, Б.Б.Полынова, В.Р.Вильямса. Однако практическое использование таких севооборотов явно недостаточно [Ковда, 1985]. Монокультуры имеют явное предпочтение. Однако не следует забывать грозного, но верного предостережения основоположника научного земледелия Ю. Либиха: «Нет более прямого пути к абсолютному обнищению народа, чем беспрерывная культура однолетних растений» (цит. по [Усольцев, 1985, с. 152]).

По-видимому, не меньше вещества, а с ним и энергии уносится из-за смывов черноземных почв в результате применения неправильных агротехнических приемов. Весенние смывы и изобильные поливы приводят к уносу с дождевой и поливной водой до 1,5— 1,6 млрд т почв ежегодно.

Избыточный полив или даже просто интенсивное орошение земель приводит к еще одному страшному «бичу» орошаемого земледелия — к засолению почв. (Проблема эта древняя, существовавшая еще у вавилонян.) Даже если вода, используемая для орошения, не очень соленая и относится к слабо минерализованной, все равно при большом ее расходе с орошением полей в почве накапливаются соли, и она быстро приходит в негодность, теряя плодородие. Образуемые человеком «вторичные» солончаки, к сожалению, широко распространены по всему миру.

С энергетической точки зрения интенсификация сельского хозяйства прежде всего означает привлечение дополнительных потоков энергии, повышение расхода энергии, затраченной на производство единицы продукции. Это дополнительные потоки энергии прежде всего от добываемого энергетического сырья. Так что при полной оценке по энергии производимой сельскохозяйственной продукции общие энергетические затраты возрастают многократно. «При интенсивном ведении сельского хозяйства большая часть энергии для производства картофеля, мяса и хлеба берется не от Солнца, а из ископаемого топлива. Широкая публика плохо себе это представляет. Например, многие думают, что большие успехи в сельском хозяйстве объясняются только умением человека создавать новые генетические варианты. Но использование этих вариантов рассчитано на большой расход дополнительной энергии. Деятели, пытающиеся помочь развивающимся странам поднять эффективность их сельского хозяйства, не обеспечив значительных дополнительных вложений энергии, просто не понимают положения дел. Основанные на опыте высокоразвитых стран рекомендации для развивающихся стран могут иметь успех только в том случае, если они сопровождаются подключением к богатым источникам дополнительной энергии...» [Odum H., 1967; цит. по Одум Ю., 1975, с. 64]. Эта довольно длинная цитата из работы известного американского эколога Г. Одума убедительно иллюстрирует необходимость правильного учета энергетических потоков при интенсификации процессов биосинтеза.

Одним из наиболее негативных явлений интенсификации сельского хозяйства является резкое ухудшение окружающей среды, и прежде всего ее загрязнение избыточными удобрениями и ядовитыми пестицидами. Чем больше вносится удобрений, тем меньшая доля их используется непосредственно растениями, тем большая часть уходит со смывами в водоемы, загрязняя реки, озера и даже моря и океаны.

Загрязнение внутренних водоемов материков биогенными соединениями типа нитратов и фосфатов, смываемыми с полей и культивируемых пастбищ, является одним из главных загрязнений гидросферы планеты, и об этом мы говорили в предыдущем разделе. Но еще большую опасность представляет загрязнение почвы и воды пестицидами, одним из главных источников которых также является сельское хозяйство. Обработка почвы за последние 100 лет становилась все более активной. Это означает, что мобилизовывалось естественное плодородие почвы и повышалась урожайность, по в то же время снижалось содержание почвенного гумуса и усиливались эрозионные процессы. Для восполнения потерь стали применяться искусственные удобрения, с помощью мощной сельскохозяйственной техники росли производительность труда, урожайность и эксплуатация земель. Но в целом индустриализация сельского хозяйства с очевидностью приводит к серьезным негативным последствиям. Возрастает энергетическая цена, которую надо платить, чтобы ликвидировать эти последствия: рекультивировать и восстанавливать эрозированные почвы, очищать водоемы, усложнять водозаборные и водораспределительные сооружения, совершенствовать системы очистки и т. д. Это и есть одна из важных причин снижения биоэнергетических показателей.

Для разрешения этих противоречий анализируются различные пути. Один из них связывается с созданием систем минимальной обработки почвы, чтобы не нарушать ее структуру и минимизировать кажущиеся энергетические траты (до 50% общих трат энергии при отвальной обработке почвы идет на вспашку и посев). Если, например, вносить гербициды в почти не обработанную почву (вариант нулевой обработки почвы), то затраты энергии уменьшаются в 3,5 раза. Но с одной стороны, количество гербицидов, необходимых для минимальной и нулевой обработки, столь велико, что увеличивает энергетическую цену продукции почти до тех же величин, что и при традиционных методах плужной обработки. А с другой — большое количество применяемых гербицидов представляет такую опасность для потребителей продукции сельского хозяйства, перед которой бледнеют все прочие. Гербициды, как и всякие другие «...циды», это убийцы живого. Их избирательность далеко не абсолютна, как у всех химических соединений; большинство из них имеют длительный срок жизни, канцерогенны, мутагенны и т. д. Достаточно напомнить о том же ДДТ, распространившемся по всей планете и накопленном в теле антарктических пингвинов. Сельское хозяйство имеет гораздо большие масштабы и распространенность на планете, чем другие виды деятельности человека, связанные с использованием биоцидов, поэтому приходится считаться с тем, что его «цидовая» политика представляет серьезную опасность в настоящее время. И прежде всего это относится к здоровью самого человека.

Итак, резюмируя современное состояние всех сфер (атмо-, гидро- и лито-) биосферы, мы можем еще раз подчеркнуть, что оно вызывает серьезную тревогу, так как загрязнение приняло глобальный характер. Работа по старым технологиям становится невозможной. Основные антропогенные загрязнители: энергетика, промышленность, индустриализованное сельское хозяйство — должны быть в корне перестроены с учетом сохранения окружающей среды.

Известный французский эколог Франсуа Рамад заключает свой обстоятельный труд «Основы прикладной экологии» [Л., 1981] весьма примечательными словами: «Сейчас, в конце 20-го столетия, никто не станет отрицать, что только радикальное изменение взаимоотношений между человеком и природой позволит нам избежать судьбы динозавров» (с. 514).