Динамика экологического ущерба
Мы начнем с описания динамики экологического ущерба, который будем для простоты называть "загрязнением", хотя экологический ущерб может проявиться и в виде вырубки лесов, заболачивания местности или беспорядочной застройки жилых районов: все это мы рассматриваем как частные случаи загрязнения среды. Предприятия, загрязняющие окружающую местность, могут выбрасывать свои отходы непрерывно, или только время от времени, причем состав отходов может быть сложным. Будем следить за одной определенной компонентой выбросов, измеряя ее в некоторых условных единицах – например, в процентах концентрации выбрасываемого вещества в воздухе, воде или почве. Если режим работы предприятия задан, то концентрация загрязнения зависит еще от условий загрязняемой среды, которая до известной степени способна разлагать или удалять рассматриваемое вещество. Разумеется, при этом оно может уходить в другую среду, например, из воздуха в почву или наоборот; но мы будем следить только за концентрацией загрязнения в определенной фиксированной среде. Как и в других случаях сложных систем, закономерности изменения концентрации не могут быть выражены формулами, но метод фазовых портретов позволяет описывать происходящие явления и предсказывать их дальнейшее развитие.
Концентрация загрязнения среды, меняющаяся со временем, аналогична численности популяции насекомых, рассмотренной в главе 1, с тем отличием, что концентрация в последующие моменты времени зависит не только от концентрации в предыдущие моменты, но еще от выбросов загрязняющего предприятия. Если продолжить аналогию с насекомыми, то надо допустить не только "развитие" их "туземной" популяции, живущей на данной территории, но также непрерывный или периодический завоз насекомых извне.
Отвлечемся сначала от загрязняющего предприятия и займемся свойствами загрязняемой среды. Фиксируем пункт местности, где изучается загрязнение, и тем самым свойства среды в этом месте и расстояние от загрязняющего предприятия. Вся излагаемая дальше динамика загрязнения относится к выбранному пункту. Будем считать, что рассматривается вполне определенный загрязнитель, попавший (все равно, каким образом) во вполне определенную среду. Чтобы установить временно'е изменение загрязнения, можно воспользоваться уже известным нам методом фазовых портретов. В отличие от специальных условий главы 1, где был естественный период развития популяции в один год, после которого происходит смена поколений, ситуация с выбросами и разрушением загрязнителя может быть самой разнообразной. Поэтому последовательные наблюдения концентрации можно производить через равные промежутки времени, продолжительность которых будет зависеть от скорости процессов загрязнения и разрушения загрязнителя. Для простоты мы будем условно называть такой произвольно выбранный промежуток времени "годом". Но в действительности продолжительность этого периода выбирается в зависимости от рассматриваемой задачи.
По аналогии с методом фазовых портретов главы 1, произведем в текущем году, например, 1 января, измерение концентрации загрязнителя в среде и обозначим полученную величину через К; повторим измерение через год и обозначим полученную величину через М. Предположим, что в течение года наблюдения никакие добавочные загрязнения в среду не вносятся. Тогда можно назвать пару чисел (К,М) "стандартным наблюдением" разрушения (или, на ученом языке,"деструкции") данного загрязнителя в данной среде. Производя ряд таких наблюдений, можно получить фазовый портрет деструкции и построить "облако" соответствующих точек на плоскости с координатами (К,М). Есть основания полагать, что величина М зависит преимущественно от К, хотя, разумеется, на процесс деструкции в течение года могут влиять и различные случайные обстоятельства – погода, перемещение почвенных вод и т.д. Пренебрегая этими отклонениями, будем считать, что М есть вполне определенная функция от К: М = f(К), и назовем ее функцией деструкции.
Как обычно в исследовании сложных систем, мы не можем описать эту функцию формулой, а находим ее с помощью многократных измерений указанного типа, которые мы назвали стандартными наблюдениями. Имея график такой функции, можно решить ряд вопросов, возникающих при промышленном загрязнении среды. В отличие от главы 1, в рассматриваемом теперь случае всегда М < К, то есть концентрация загрязнителя может только уменьшаться: среда перерабатывает его с помощью каких-либо механизмов в другие вещества, не вызывающие у нас опасений, или выводит его в другие среды – например, из почвы в воздух, или наоборот. Мы считаем, что загрязнитель, попавший в среду, сам по себе не размножается, как это может быть в случае бактериальных загрязнений; нас интересуют только "мертвые" загрязнения.
Подчеркнем, что мы сосредоточиваем здесь внимание только на одной рассматриваемой среде и одном загрязняющем веществе, не принимая во внимание возможной вредности этого вещества после перемещения его в другую среду. Для другой среды будет и другая функция деструкции.
Имеющиеся экспериментальные данные позволяют сделать некоторые общие предположения о функциях деструкции. Мы предположим, что деструкция загрязнителя осуществляется двумя типами разрушителей – живыми и мертвыми. Упрощенная картина их действия изображена на рисунке 1. Так как количество загрязнения в наших предположениях может только убывать, то имеем M < K; таким образом, весь фазовый график лежит ниже биссектрисы координатного угла. (В аналогии с насекомыми это означало бы, что их популяция, без завоза со стороны, вымирает).
Рис.1
При K = 0, то есть при отсутствии начального загрязнения, его не будет и в конце наблюдения, и будет M = 0; поэтому M(0) = 0. При небольших значениях К можно предположить, что оба фактора деструкции действуют совместно линейным образом: это значит, что за год они уменьшают концентрацию загрязнителя в постоянное число раз: M = c1K , где с1 < 1. На рисунке 1 этому соответствует прямолинейный участок фазовой кривой, где отношение M/K постоянно и меньше единицы, так что этот участок образует с осью K угол, меньший 450. При бо'льших концентрациях K живой разрушитель вымирает, подавленный химическим изменением среды; при этом мертвый разрушитель действует по-прежнему линейно, но теперь разрушается меньшая доля загрязнителя. Иначе говоря, при дальнейшем возрастании K отношение M/K растет. Геометрически это означает, что для точки фазовой кривой P с координатами (K,M) хорда OP образует все больший угол с осью K (рис.1). Наконец, весь живой разрушитель перестает действовать и остается только мертвый, действующий линейно, но менее интенсивно, чем вместе с живым: M = c2K, где 0 < c1 < c2 < 1. На рисунке 1 это изображается прямолинейным участком справа, причем на этом участке отношение M/K постоянно и, значит, эта прямая тоже проходит (при продолжении) через начало координат.
В менее распространенном случае при увеличении концентрации загрязнителя среда "включает" некоторые добавочные механизмы его деструкции, так что начиная с определенного уровня загрязнения отношение М/К убывает: это значит, что среда разрушает бо'льшую долю загрязняющего вещества, чем при малых концентрациях. На графике наклон прямой ОР при этом уменьшается, и кривая несколько "провисает" книзу, как это видно на рисунке 2 Но при дальнейшем увеличении концентрации отношение М/К опять начинает расти, и дальше все происходит, как на предыдущем рисунке.
Рис.2
При рассмотрении рисунка 1 (или 2) бросается в глаза, что отношение M/K все время заметно меньше 1, то есть в течение периода между наблюдениями , который мы условно назвали "годом", происходит значительное изменение концентрации. Следуя терминологии физиков, время, в течение которого величина меняется достаточно сильно, но не слишком сильно, то есть, в нашем случае,
a < M/K < b
где a и b имеют порядок единицы [То есть отношение a/b больше 0,1, но меньше 10], называется "характерным временем" изменения этой величины. На рисунке 1 характерное время изменения концентрации имеет порядок одного "года". Если бы мы выбрали период между наблюдениями много меньше характерного времени, то за такой период деструкция оказалась бы незначительной, то есть M/K было бы близко к 1, и фазовый портрет практически совпал бы с биссектрисой координатного угла. Такой график был бы непригоден для выяснения практически важных вопросов об изменении концентрации. Точно так же, если выбрать период между наблюдениями намного больше характерного времени, то M/K будет почти равно нулю, и фазовый портрет практически совпадет с осью K, то есть опять-таки будет бесполезен. Поэтому для предсказания процессов загрязнения следует брать в качестве периода время, сравнимое с характерным временем деструкции загрязнителя. В одних случаях этот период может составить десятки лет, в других – несколько дней. Таким образом, период, по которому составляется фазовый портрет концентрации, от случая к случаю меняется, в зависимости от процесса выбросов и процесса деструкции. Мы будем условно называть этот период "годом", но следует иметь в виду, что, в отличие от биологически обусловленного периода размножения, рассмотренного в главе 1, при исследовании загрязнения среды "год" может иметь различное значение.
Фазовый портрет деструкции загрязнения – важная характеристика среды по отношению к рассматриваемому веществу, к сожалению, до сих пор почти не изученная. Покажем, как можно пользоваться ею для предсказания последствий промышленного загрязнения.
Начнем с однократного выброса загрязнителя, когда после выброса дальнейшее загрязнение не происходит, и к которому, по определению, относятся фазовые портреты рисунков 1, 2. Такое загрязнение не характерно для постоянно действующих предприятий, а скорее описывает катастрофу, вроде хиросимской атомной бомбы или чернобыльского взрыва. Именно в этих печальных случаях были проведены подробные исследования концентрации в различных средах, позволяющие составить фазовые портреты деструкции для некоторых веществ, особенно радиоактивных. Катастрофы доставили материал для научных экспериментов – вопреки нравственному закону, запрещающему ставить эксперименты на людях!
Если концентрация в среде сразу же после выброса равна с0, то, поскольку других выбросов нет, можно найти по фазовой кривой концентрацию через год после выброса, затем через два года, и т.д. Пользуясь приемом отражения в биссектрисе, разработанным в главе 1, легко убедиться, что со временем концентрация загрязнителя стремится к нулю, какова бы ни была масса выброса (читатель выполнит на рисунке 1 или 2 построение ступенчатых фигур, как это уже делалось раньше). Конечно, остается вопрос о времени очищения среды, но его можно также определить по фазовой кривой. Если начальное загрязнение было очень сильным, то есть точка Р находилась далеко справа, то для этого может понадобиться много времени (убедитесь в этом по рисунку 1 или 2).
Сделаем еще следующее важное замечание. В предыдущем изложении мы считали, что процесс деструкции загрязнителя в течение определенного периода времени зависит лишь от наличной концентрации загрязнителя в начале этого периода, но не от предыстории процесса, то есть не от того, каким образом накопилось это начальное загрязнение. Вообще говоря, это может быть и не так, поскольку длительное предшествующее действие загрязнения может изменить свойства среды по отношению к наличной величине концентрации в данный момент, так что в разные моменты времени мы имеем дело с разной средой. Но мы предположим, что среда остается все время одной и той же. Заметим, что, в отличие от дальнейших фазовых портретов, фазовый портрет концентрации от однократного загрязнения зависит лишь от выбранного места, но не от расположения предприятия: он характеризует реакцию среды на загрязнитель в этом месте.
Конечно, однократные выбросы случаются редко, обычно вследствие аварий. "Нормально" работающее предприятие производит либо периодическое, либо непрерывное загрязнение среды в течение длительного времени. Оказывается, что для обоих этих случаев (а в действительности – и для самого общего процесса непрерывного загрязнения) можно получить фазовый портрет концентрации загрязнителя по известному фазовому портрету концентрации от однократного загрязнения. Этот важный результат, как мы увидим, позволяет понять процесс загрязнения среды действующим предприятием. Рассмотрим сначала случай, когда предприятие производит выбросы равной массы в отдельные моменты через равные промежутки времени – предположим, через год (напомним снова условный смысл этого периода!). Пусть, например, выброс производится в 0 часов первого января каждого года. [По сказанному выше, промежуток между выбросами ("год") должен быть в таком случае одного порядка с характерным временем деструкции загрязнителя. Если он значительно больше, то в промежутках между выбросами нового загрязнения не происходит, и дело сводится к фазовому портрету деструкции; если значительно меньше, то можно считать выбросы непрерывными и применять поднятый график рисунка 6 (см. ниже)]
Обозначим фазовую функцию, соответствующую периодическому загрязнению, через g(x). Оказывается, что если известна фазовая функция для однократного загрязнения f(x), то можно найти по ней функцию g(x). В самом деле, измерим концентрацию загрязнения 31 декабря текущего года, непосредственно перед полуночью; пусть она будет равна x. Величину концентрации от выброса в 0 часов 1 января, рассматриваемую сразу же после выброса, до начала деструкции, обозначим через d0; это, наряду с периодом выбросов в один год, основная информация о вредной деятельности предприятия. Таким образом, общая концентрация в среде сразу же после выброса будет x + d0. В течение следующего года, который мы будем считать годом наблюдения, это количество будет разрушаться без дальнейшего прибавления загрязнителя – до момента перед полуночью 31 декабря, когда, по определению фазовой функции однократного загрязнения f(x), оно превратится в f(x + d0). Но, с другой стороны, мы обозначили фазовую функцию многократного периодического загрязнения через g(x); следовательно, под действием многократного загрязнения (проявившегося за год наблюдения лишь в виде одного выброса 1 января) концентрация x перешла в g(x). Итак,
g(x) = f(x + d0).
Полученная функция g(x) связана c f(x) очень простым преобразованием – "сдвигом" графика на величину d0: это значит, что значение функции g в точке x равно значению функции f в точке x + d, cдвинутой вправо на d0 (см. рис.3). Но тогда график функции g получается из графика f сдвигом влево на ту же величину d0.
Рис.3
Итак, доказана следующая теорема:
Фазовая функция периодического загрязнения задается выражением
g(K) = f(K + d0),
где f(K) – фазовая функция деструкции в рассматриваемой среде, а d0 – концентрация от однократного выброса, рассматриваемого предприятия сразу же после выброса.
Зная график f(K) (рис.1), можно получить из него график g(K) сдвигом влево на величину d0, причем значения g(K) для отрицательных K, не имеющие смысла, отбрасываются (в доказательстве теоремы исходная концентрация x в начале наблюдения считалась неотрицательной). Дальше мы рассмотрим, какой вид имеет "сдвинутая" кривая M = g(K).
Для применения предыдущей теоремы надо знать фазовый портрет M = f(K) однократного загрязнения, который можно измерить по одному выбросу, достаточно массивному, чтобы доставить большое значение исходной концентрации и, тем самым, найти вид кривой рисунка 1 при больших K. Как уже было сказано, такие выбросы происходят обычно в случае катастроф, последствия которых изучались. Таким образом, из несчастий, не делающих чести человеческому разуму, можно вывести информацию об экологическом ущербе от "нормально" действующих предприятий. [Заметим, что общий случай выбросов переменной массы можно свести к случаю однократного выброса, используя по существу только что описанный метод, то есть складывая концентрации, оставшиеся после деструкции от всех предшествующих выбросов. Для этого надо выполнить хорошо известное в математической физике сведение непрерывных процессов к "дискретным", то есть происходящим в отдельные моменты]
Подвергнем теперь кривую M = f(K) рисунка 1 преобразованию сдвига, о котором говорится в предыдущей теореме. Как легко убедиться, получается левая кривая рисунка 4 (рассматриваемая лишь при положительных значениях K). Бросается в глаза, что эта фазовая кривая имеет устойчивую точку равновесия 1, на пересечении с биссектрисой: вспомните исследование фазовых кривых в главе 1! Впрочем, мы займемся таким исследованием дальше.
Рис.4
Рассмотрим теперь случай, когда предприятие производит равномерные выбросы все время. В этом случае надо знать, кроме фазового портрета деструкции (рис.1), еще концентрацию сразу же по истечении первого года работы предприятия, которую мы обозначим через d1. Ее можно приближенно отождествить со "среднегодовым выбросом" предприятия, то есть с суммой концентраций, возникающих сразу же после небольших периодов работы предприятия. Такое отождествление неточно, так как к концу года часть более ранних выбросов за этот год успевает разрушиться. Все же мы будем условно называть эту величину d1 "среднегодовым выбросом", имея в виду предыдущее определение.
Пусть теперь в начале года концентрация, оставшаяся от всей предыдущей деятельности предприятия, равна x, Если бы в течение последующего года наблюдения не было дальнейших выбросов, то в конце этого года, по определению фазовой функции однократного загрязнения, мы имели бы концентрацию f(x). Но к этой величине прибавляется концентрация d1 от непрерывной работы предприятия в течение года наблюдения, так что в конце года пролучается концентрация f(x) + d1. Это и есть, по определению, значение фазовой функции непрерывного загрязнения g(x) – концентрация, остающаяся в конце года такого загрязнения, если в начале его она была равна x. Итак, доказано следующее:
Фазовая функция непрерывного загрязнения задается выражением
g(K) = f(K) + d1,
где f(K) – фазовая функция деструкции в рассматриваемой среде,
а d1 – среднегодовой выброс предприятия.
Каждое значение функции g больше соответствующего значения функции f на одно и то же число d1, что соответствует "подъему" графика на величину d1 (рис.5).
Рис.5
Если фазовая кривая деструкции от однократного загрязнения имеет вид, изображенный на рисунке 1 (о чем имеются убедительные данные), то, подняв этот график на величину d1, мы получим фазовую кривую непрерывного загрязнения, которая будет изучена дальше.
Как мы видели, в условиях постоянно действующего предприятия фазовый портрет концентрации загрязнения получается из фазового портрета однократного загрязнения одной из двух процедур: в случае периодического загрязнения – сдвигом влево на d0, в случае непрерывного загрязнения – подъемом вверх на d1. Результаты, которые получаются для фазовой функции g(x), в обоих случаях сходны. Мы проведем исследование, для определенности, во втором случае, предоставив читателю рассмотреть аналогичным образом первый.
При подъеме на d1 левый конец кривой M = f(K), находящийся в начале координат, поднимается в точку (0,d1) и оказывается таким образом выше биссектрисы координатного угла. С другой стороны, при больших значениях K кривая M = f(K) совпадает с прямой M = c1K, где 0 < c1 < 1. Следовательно, наклон этой прямой к оси K меньше 450, и эта прямая, а вместе с ней и фазовая кривая при больши'х K, лежит ниже биссектрисы. Для промежуточных значений K возможны разные случаи.
(1) Кривая M = f(K) + d1 пересекает биссектрису в единственной точке 1 (рис.6) в направлении сверху вниз. Из прямого геометрического рассмотрения рисунка 1 ясно, что так обстоит дело при не слишком больших значениях d1, когда точки кривой, далекие от биссектрисы в начале подъема, не успевают до нее подняться. При этом получается верхняя кривая, изображенная на рисунке 6.
Прием отражения в биссектрисе, выработанный в главе 1, показывает, что на этой кривой есть единственная точка устойчивого равновесия – точка 1; обозначим ее абсциссу через K1. Точка фазовой кривой P0 c абсциссой K0 при K0 < K1 движется вправо, и через некоторое число шагов, соответствующих в нашей условной хронологии годам, подойдет сколь угодно близко к точке 1. Если же исходное значение K0 > K1, то точка фазовой кривой движется влево, к той же точке 1. Итак, точка 1 изображает состояние среды с установившейся концентрацией загрязнения K1. Поскольку фазовая кривая больше нигде не пересекает биссектрисы, других точек устойчивой концентрации нет. Насколько велика концентрация K1, зависит от формы кривой деструкции M = f(K) и от значения среднегодовой концентрации d1. По этим данным, как мы увидим, можно заранее предсказать устойчивую концентрацию K1, а, следовательно, решить, будет ли терпимо предприятие с таким загрязнением, и если надо, отказаться от его постройки или закрыть его.
Рис.6
(2) Кривая M = f(K) + d1 пересекает биссектрису в трех точках 1, 2, 3. Это происходит при бо'льших значениях d1: при возрастании d1 кривая M = f(K) + d1 поднимается, и при некотором значении d1 = d1a ее выпуклая часть касается биссектрисы, после чего часть этой кривой поднимается над биссектрисой, как это видно на рисунке 7 (верхняя кривая). Мы будем называть число d1a первым критическим значением. Поскольку при больших значениях K эта кривая параллельна прямой M = c1K, образующей с осью K угол меньше 450, то она в конце концов уходит под биссектрису. Тогда кривая M = g(K) в самом деле пересекает биссектрису в трех точках, которые мы и обозначили через 1, 2, 3.
Рис.7
(3) Кривая M = f(K) + d1, при еще бо'льших значениях d1, пересекает биссектрису опять в единственной точке 3, а точка 1 исчезает (рис.8). В самом деле, если дальше увеличивать d1, то при некотором значении d = d1b (которое мы назовем вторым критическим значением) вогнутая часть кривой касается биссектрисы, а затем поднимается выше нее, так что точки пересечения 1 и 2 исчезают. Но точка пересечения 3 остается, так как при больших значениях K кривая по-прежнему опускается ниже биссектрисы. Концентрация загрязнения K3, равная абсциссе точки 3, в этом случае еще выше, чем в случае (2). Для большинства загрязнителей такой уровень концентрации недопустим.
Рис.8
Важнейшее практическое значение имеет точка устойчивого равновесия 1 – режим, в котором работают все "нормальные" (не экологически преступные) предприятия. Для этой точки надо найти концентрацию загрязнения K1 – ее абсциссу.
Поскольку все наши кривые – эмпирические, требуемое значение K1 находится графически. Это делается, как показано на рисунке 9. Нижняя кривая на этом рисунке – фазовый портрет деструкции М = f(К), верхняя кривая – фазовый портрет непрерывного загрязнения М = g(К), получаемый из предыдущего подъемом на d1. Отложим по оси М вниз от начала координат отрезок ОP0 длины d1, затем проведем через точку Р0 прямую, параллельную биссектрисе, до пересечения с нижней кривой в точке Р1. Тогда вертикальная прямая, проходящая через Р1, пересекает биссектрису в точке, лежащей выше точки Р1 на d1 и, следовательно, принадлежащей верхней кривой; но поскольку точка пересечения верхней кривой с биссектрисой есть не что иное, как точка равновесия 1 (см. рис.6), то мы нашли точку 1. Поэтому абсцисса точки Р1, которую мы обозначим через К1, равна ординате точки 1, а эта последняя состоит из отрезка К1Р1 длины f(К1) и отрезка Р11 длины d11 – то есть K1 = f(K1) + d1, иначе говоря, K1 есть корень уравнения K = f(K) + d1.
Рис.9