Оптимальный принцип раздела участков
Чтобы установить спорную границу между зонами К и L, нужен некоторый руководящий принцип, приемлемый для обеих конкурирующих сторон. Оказывается, такой принцип можно формулировать следующим образом: распределение территории между крестьянами и гидростроителями должно полностью удовлетворять имеющиеся потребности в сельскохозяйственной продукции и электроэнергии, причем таким образом, чтобы общая сумма трудовых затрат обеих сторон – крестьян и гидростроителей – была минимальной.
Такая формулировка может показаться произвольной – с точки зрения обычных представлений о "неограниченной конкуренции" производителей, интересы которых кажутся противоположными. Конечно, если думать о благе общества в целом, то подобные постановки вопроса вполне естественны. Но для введения правил, подчиняющих частные интересы общественному интересу, нужно далеко идущее гражданское согласие по поводу этих правил – например, кто будет их устанавливать и наблюдать за их выполнением. Хорошо известно, что произвольное и некомпетентное регулирование хозяйственной жизни приводит к разорительным экспериментам, присвоившим себе название "социализма", а при меньшей интенсивности государственного вмешательства – к засилью бюрократии и подавлению экономической инициативы. Но оказывается, что правильный учет различных интересов позволяет в ряде случаев найти решения, выгодные для всех участвующих сторон и наилучшие возможные при данных природных условиях. Этот факт, иллюстрируемый дальше на примере поставленной выше простой задачи, может бросить новый свет на издавна популярный среди социологов и философов вопрос о "природе человека".
В самом деле, многие из них исходят из принципа, что "человек зол" и всегда стремится удовлетворить свои интересы за счет другого, и что не существует честной торговли. Разумеется, если распределение экономических и экологических благ осуществляется произвольными методами, то можно дойти до прямого насилия, и не всегда удается доказать "заинтересованным сторонам", что агрессивное поведение обычно не приносит успеха агрессору, а идет на пользу какой-нибудь "третьей" стороне, или даже – парадоксальным образом – побежденным на поле сражения, берущим реванш в мирном экономическом соревновании. Но мы предположим, что люди решают хозяйственные вопросы мирным путем, посредством взаимных компромиссов, и посмотрим, что из этого может получиться в описанной выше "конфликтной" ситуации.
Прежде всего, мы будем считать, что при любом осуществимом на практике распределении участков (которые мы условно назвали "долинами") потребности общества полностью удовлетворяются, то есть производится в точности столько сельскохозяйственной продукции и гидроэнергии, сколько требует уже установившийся рынок. В самом деле, если бы производилось, например, меньше сельскохозяйственной продукции, чем можно продать, то нашлись бы желающие использовать долины, менее выгодные для земледелия, и граница области А на рис.3 сдвинулась бы влево; точно так же, граница области В устанавливается так, чтобы в точности удовлетворялась потребность в энергии.
Будем считать, для простоты, что "полезность" сельскохозяйственной продукции Q1, измеряемая ее рыночной ценой, одна и та же для всех долин, и точно так же одинакова цена их энергетической продукции Q2. [Конечно, это упрощенное предположение принимается лишь для того, чтобы не вводить сложного математического аппарата. Мы демонстрируем здесь методы, имеющие гораздо более широкие применения] Обозначая через S1 трудовые затраты на сельскохозяйственную продукцию данной долины, мы ввели выше ее "удельную полезность" П1, т.е. цену продукции в расчете на единицу трудовых затрат
откуда
В отличие от Q1, величины S1 и П1 различны для разных долин, так как природные условия в них неодинаковы (для удобства исследования мы можем так выбрать размеры участков, именуемых "долинами", чтобы сделать равной их производительность, но природные условия от нас не зависят!). Точно так же, для энергетической продукции долины имеем
где Q2, как мы предположим, одна и та же для всех долин, а S2 и П2 различны. Заметим, что если, как это было сделано выше, размеры участков выбраны таким образом, чтобы у них была одинаковая сельскохозяйственная полезность Q1, то отсюда, конечно, не следует, что их энергетическая полезность Q2 тоже будет одинакова. Поэтому сделанные выше предположения заведомо относятся к частному случаю интересующей нас задачи. Общий случай также поддается решению – аналогичным методом – но мы ограничиваемся частным случаем для упрощения математического аппарата. На наших рисунках долины характеризуются точками с координатами П1, П2, то есть их "удельными полезностями" для обоих видов продукции.
Рассмотрим теперь простую сделку – обмен двух долин: предположим, что из первой долины работавшие там крестьяне переходят во вторую, где работали строители, а те переходят в первую долину. Поскольку, как мы предположили, производительность всех долин по каждому виду продукции одна и та же, такой обмен не противоречит наложенному выше условию полного обеспечения рынка. Для первой долины сохраним прежние обозначения трудовых затрат S1 и удельной полезности П1, а для второй (теперь используемой крестьянами) обозначим трудовые затраты через S1', а удельную полезность через П1'. Тогда приращение трудовых затрат на сельскохозяйственную продукцию в результате обмена равно S1' – S1, причем, в соответствии с математическим способом выражения, "приращение" может быть положительным или отрицательным, в зависимости от того, возрастает S1 или убывает. Приращение некоторой величины обозначается знаком? :? S читается как "приращение S". Поскольку мы имели для первой долины S1 = Q1/П1, а для второй аналогично S1' = Q1/П1' (Q во всех долинах одно и то же!), получаем
Точно так же, для строителей, переходящих из второй долины в первую, приращение трудовых затрат на производство энергии равно
Очевидно, обмен возможен лишь в том случае, если он выгоден обеим сторонам (напомним, что допускаются лишь добровольные сделки!). Можно указать два случая, когда обмен будет обоюдно выгоден и потому будет в самом деле происходить. Первый случай – когда обмен снижает трудовые затраты обеих сторон, то есть когда оба приращения S1, S2 отрицательны. Второй случай – когда одно из этих приращений положительно, а другое отрицательно, так что выигрывает от обмена лишь одна сторона: пусть выигрывают, например, крестьяне, а гидростроители проигрывают, то есть ?S1 < 0, но ?S2 > 0. Казалось бы, гидростроители никогда не согласятся на такой обмен. Но рассмотрим частный случай, когда выполнено неравенство
?S1 + ?S2 < 0
(заметим, что оно выполнено и в рассмотренном выше первом случае!). Тогда абсолютная величина первого (отрицательного) приращения ?S1 больше второго (положительного) приращения ?S2, как это видно из предыдущего неравенства (проверьте это заключение, вспомнив смысл абсолютной величины – см. также наглядную схему на рисунке 4):
Это значит, что крестьяне получат от обмена выгоду, б`oльшую, чем убыток строителей. Тогда они могут затратить часть этой выгоды, компенсировав строителям их потери, и даже с некоторым избытком, так что обмен окажется выгодным для обеих сторон. Вот поучительный пример честной торговли! Точно то же произойдет, если от обмена непосредственно выиграют строители, а проиграют крестьяне. Оба рассмотренных выше случая (первый и второй, с его двумя вариантами, в зависимости от того, кто выигрывает) суммируются одним и тем же неравенством ?S1 + ?S2< 0.
Рис.4
Если это условие выполнено, то обмен будет выгоден для обеих сторон (при надлежащей компенсации), и потому будет происходить. Но при таком обмене общая сумма трудовых затрат на всю продукцию (и сельскохозяйственную, и энергетическую) уменьшится: в самом деле, уменьшение затрат для крестьян, по наложенному условию, превосходит увеличение затрат для строителей (когда эти последние увеличиваются от обмена), а кроме двух обмениваемых долин, в остальных местах затраты вовсе не меняются. Итак, если Si означает полную сумму затрат на всю сельскохозяйственную продукцию, а SII – полную сумму затрат на всю энергию, то, при условии
?S1 + ?S2 < 0.
сумма SI + SII уменьшается вследствие обмена.
Вспомним теперь, что в зонах А и В (рис.3) выгодно, соответственно, только сельское хозяйство (в А) и только гидростроительство (в В). Вся трудность состоит в разделе спорной области, где возможны оба вида производства, то есть в определении границы между зоной сельского хозяйства К и зоной гидростроительства L (см. там же, на рис.3). Можно ожидать, что долины будут предметом сделок – купли и продажи – которые в конечном счете сведутся к описанным выше операциям обмена, с возможной компенсацией. Как мы видели, такие обмены обоюдно выгодны и, следовательно, несомненно будут происходить, если выполнено приведенное выше условие ?S1 + ?S2 < 0.
Ясно, что чем больше по абсолютной величине отрицательная левая часть этого неравенства, тем выгоднее обмен, так как обе стороны больше выигрывают в его результате. Обмены прекратятся, когда их выигрыш станет равен нулю – и тогда установится окончательная граница между зонами крестьян и гидростроителей. Естественно предположить, что последние обмены произойдут как раз вблизи этой искомой границы, так что на самой границе будет выполняться равенство ?S1 + ?S2 = 0.
На рисунке 5а изображен описываемый дальше случай, когда имеет смысл обменять "сельскохозяйственный" участок а, примыкающий к границе со стороны К, на "гидростроительный" участок а', также примыкающий к границе, но со стороны L.
Рис.5а Рис.5б
Подставив в неравенство ?S1 + ?S2 < 0. полученные выше выражения для ?S1 и ?S2, придадим ему вид
Это и есть, в подробной записи, условие, при котором происходит обмен участков. Мы будем искать теперь удовлетворяющие ему долины около границы, отделяющей зоны К и L, где такие обмены будут вероятнее всего происходить. Неравенство (?) связывает координаты двух точек: p c координатами (П1, П2) и p' с координатами (П1', П2'). Поскольку последние обмены будут происходить вблизи границы, естественно искать точки p и p', удовлетворяющие условию (?) , на самой граничной кривой. Предположим, что такие точки найдутся (см. рис.5а). Допустим, далее, что для них выполнено условие (?) . Тогда оказывается, что можно произвести обмен изображенных на рисунке 5а участков с уменьшением суммы всех трудовых затрат SI + SII. Участки а и а' мы выберем столь малыми, чтобы координаты каждой долины первого из них были очень близки к координатам точки p, а координаты каждой долины второго – очень близки к координатам точки p'. Надо представить себе, что долины малы по сравнению с участками, а участки – по сравнению со всей "картой" 5а, описывающей значительную часть страны и, тем самым, содержащей большое число долин. При такой близости долин к выбранным на кривой точкам для каждой долины участка а и каждой долины участка а' будет все еще выполнено неравенство (?) , в котором первая скобка относится к долине участка а, а вторая к долине участка а'. Но тогда возможен обмен каждой из долин первого участка на каждую долину второго! Читателю рекомендуется посмотреть выше, каким образом такой обмен обеспечивается неравенством ?S1 + ?S2 < 0, равносильным (?) . Остается подобрать размеры участков а, а' вблизи точек p, p' так, чтобы они содержали равное число долин, и обменять все долины первого участка на различные долины второго; тогда сумма всех затрат SI + SII уменьшится, как было сказано выше.
При таком обмене участков граница между К и L, если смотреть со стороны К, "отступает" вблизи точки p, уступая участок а зоны К, и "наступает" вблизи точки p', захватывая участок а' зоны L. Итак, если на граничной кривой найдутся точки с координатами, удовлетворяющими неравенству (?), то можно уменьшить сумму всех затрат, причем рынок по-прежнему остается обеспеченным продукцией того и другого вида, поскольку это условие соблюдалось в описанных выше обменах.
Но оказывается, что сумму SI + SII можно уменьшить и в том случае, когда для некоторой пар точек p, p' граничной кривой выполняется противоположное неравенство
В самом деле, рассмотрим рисунок 5б, где b – "энергетический" участок, примыкающий к границе со стороны L, а b' – "сельскохозяйственный" участок, примыкающий к границе со стороны К. Произведем, аналогично предыдущему, обмен участка b' на участок b. При этом в участке b' S1 = Q1/П1', S2 = Q2/П2', а в участке b S1 = Q1/П1, S2 = Q2/П2 (проверьте эти равенства!). Поэтому приращение S1 при обмене b' на b равно
а приращение
Оба последние выражения отличаются лишь знаками от скобок формулы &(beta;); следовательно, для обмена участков b, b' сумма
?S1 + ?S2 < 0.
Итак, если на границе найдется пара точек, для которых выполнено неравенство (beta;), то опять можно уменьшить полную сумму затрат SI+ SII, сдвинув границу, как указано на рисунке 5б! (Проверьте, где граница отступает и где наступает).
Что же означает полученный результат? Если для любой пары точек границы невозможны оба неравенства (?) и (beta;), это значит, что для любой пары граничных точек выражение в левых частях – то есть сумма ?S1 + ?S2 – равна нулю. В координатах это значит, что для любых двух точек p, p' граничной кривой справедливо равенство
Как мы увидим, это равенство позволяет найти форму кривой, разделяющей зоны конкурирующих видов природопользования. Но прежде всего из него видно, что на границе между зонами уже невозможны никакие обмены: граница устанавливается тогда, когда все выгодные сделки между обеими сторонами уже состоялись! Равенство (?) не позволяет дальше уменьшить общую сумму всех затрат SI + SII, и можно доказать, что в действительности мы нашли распределение долин между конкурентами, делающее эту сумму минимальной [Примененный метод иллюстрирует возможности вариационного исчисления. Мы сделали ряд упрощающих предположений, позволивших обойтись средствами школьной алгебры. В более реалистических задачах процедура "варьирования" граничной кривой, изображенная на рисунке 5, требует применения высшей математики]
Это значит, что стихийная деловая активность свободного рынка, описанная выше на примере обменов долинами, приводит к тому же результату, что и решение задачи оптимизации, как будто поставленной в интересах общества в целом! Это и есть то, что мы имели в виду в главе 5, говоря, что свободный рынок в сущности решает ту же задачу, что и действительно оптимальное планирование. Задолго до возникновения современных методов математической экономики это понял основоположник экономической науки Адам Смит. Он пришел – интуитивным путем – к только что высказанному открытию, выражающему, как говорили его современники, "оптимизм" Адама Смита: казалось, что "невидимая рука" рынка невольно направляет к общему благу "эгоистическую" деятельность отдельных производителей, каждый из которых думает только о собственной выгоде. Здесь нет никакого парадокса: эта их деятельность порождает конкуренцию, мобилизующую энергию личного интереса. Иное дело, как этот личный интерес отражается на личности этих производителей, и какое общество может отсюда произойти. Адам Смит, бывший не только экономистом, но и философом, понимал это гораздо лучше его последователей, "идеологов" свободного рынка. Он утверждал лишь, что свободный рынок обеспечивает наилучшую производительность общественного труда, создавая "богатство наций". В отношении распределения и использования этого богатства он вовсе не был "оптимистом".
Возникает вопрос, почему бы, в самом деле, не заменить свободный рынок (к тому же – все менее свободный в наши дни) прямым оптимальным планированием? К сожалению, действительно оптимальное планирование в масштабах больших хозяйственных организмов представляет трудности, далеко превосходившие понимание бравшихся за него дилетантов. Эти трудности связаны и с навыками мышления и поведения людей, которые очень трудно планировать. Приходится признать, что в обозримом будущем "оптимизировать" народное хозяйство будет по-прежнему рынок.
Это вовсе не значит, что методы математической оптимизации не нужны. Напротив, они дают ответы на очень важные, хотя и частные вопросы – столь важные, что без помощи этих методов человечество вряд ли сможет выжить в техническом мире, созданном им самим.
Нам осталось определить точную форму кривой, разделяющей области конкурентов К и L. Эта кривая оказывается гиперболой, может быть, известной читателю из школьного курса, где она встречается при исследовании элементарных функций. Окончательное решение поставленной нами задачи оптимизации видно на рисунке 6.
Рис.6
Для тех, кто не страшится простейших выкладок аналитической геометрии, приведем доказательство, что мы действительно получили гиперболу.
Уравнение (?) содержит координаты двух точек, лежащих на искомой кривой – p(П1, П2) и p'(П1', П2') (тогда как Q1 и Q2 – постоянные, задающие производительность "долин"), и при любом выборе
этих точек должно выполняться равенство . Фиксируем точку p' (то есть ее координаты П1', П2'), а точку p заставим пробегать граничную кривую. Тогда координаты П1,
П2 точки p ("текущие координаты" на кривой, как говорят в аналитической геометрии) удовлетворяют уравнению , где все остальные буквы надо считать постоянными. Перепишем это уравнение в виде
и обозначим правую часть через а, П1 через x, П2 через y. Тогда имеем
или
Q2x - Q1y = axy
Чтобы упростить это уравнение, сдвинем координатные оси x,y на расстояния x0, y0:
x = x0 + x', y = y0 + y',
где x , y – координаты точки p в новых осях. Имеем
Q2 x' - Q1 y' + Q2 x0 - Q1 y0 = a(x' + x0)(y' + y0),
ax'y' + x'(ay0 - Q2) + y'(ax0 - Q1) = Q2x0 - Q1y0 - ax0y0.
Подберем сдвиги x0 ,y0 так, чтобы скобки слева обратились в нуль, подставим эти числа в правую часть и обозначим полученное число через ac. Сокращая на а, получаем уравнение гиперболы:
x'y' = c (или y' = c / x' ).
Это и есть искомая кривая, делящая правый верхний угол на области L,K. Гипербола не может пересекать границы областей А и В, так как по обе стороны ее лежат долины разного назначения, а в областях А и В – только одного (сельское хозяйство в В, гидростроительство в А ).Следовательно, она проходит через угловую точку прямоугольника С.