3.6. Подготовка кормов к скармливанию
В кормопроизводстве особое значение имеет технология подготовки кормов к скармливанию, направленная на повышение их биологической ценности, чтобы полнее удовлетворить потребность птицы в энергии, питательных и биологически активных веществах. Она включает в себя ряд методов: механические, термические, гидротермические, термомеханические и др. Причем используют их как при промышленном производстве комбикормов (на комбикормовых заводах), так и в кормоцехах птицеводческих хозяйств.
Зерно в структуре кормового баланса занимает 50-80%, оно различается между собой по содержанию и качественному составу углеводов, которые в значительной степени определяют его питательную ценность и использование в организме птицы. Основу зерна составляет крахмал, поэтому при обработке кормов на него в первую очередь обращают внимание. В зерне он находится в виде крупных кристаллов (зерен), поэтому трудно подвергается воздействию пищеварительных ферментов. В опытах in vitro установлено, что зерно злаковых культур имеет различия по скорости расщепления: овес — 37,7 ч, ячмень — 27 ч, кукуруза — 14,1 ч, причем медленнее расщепляется цельное зерно. При гидротермическом и механическом воздействиях молекулы крахмала становятся более доступными для пищеварительных ферментов, благодаря чему улучшается переваримость зерна.
Измельчение (дробление) — самый распространенный и дешевый метод подготовки зерновых кормов к скармливанию. Необходимость дробления зерна определяется тем, что благодаря наличию твердой оболочки его питательные вещества находятся в труднодоступной для пищеварительных ферментов форме, поэтому переваримость сухого вещества не превышает 70-80%. При дроблении зерна оболочка разрушается и питательные вещества становятся более доступными для переваривания, так как увеличивается поверхность соприкосновения корма с пищеварительными соками. В дробленом зерне фермент амилаза дей-
L
ствует через трещины и другие структурные дефекты крахмальной гранулы, расщепляя амилозу и амилопектин, которые являются основными носителями обменной энергии в зерне. Установлено, что переваримость зерна при размалывании увеличивается на 10%.
Измельченное зерно хорошо смешивается с другими компонентами комбикорма. Однако при чрезмерно мелком помоле получается корм с большим содержанием мучнистых, пылевидных фракций, поэтому происходят потери от распыления и увеличивается запыленность помещений. Птица плохо поедает корм тонкого помола, он быстро проходит через пищеварительный тракт и поэтому хуже используется, в то же время крупинки зерна лучше перевариваются в желудочно-кишечном тракте. Следовательно, при дроблении нужно учитывать размер частиц, необходимый для птицы. Степень размола зерновых выражается следующим образом: мелкий помол — размеры частиц 0,6-0,8 мм, средний — 0,9-1,5, крупный — 1,6-1,8 мм. Для взрослой птицы рекомендуется использовать зерно крупного помола, для молодняка — среднего.
С целью предотвращения нежелательного выбора птицей частиц корма одного размера, поскольку она склевывает в первую очередь более крупные и привлекательные частицы, необходимо скармливать рационы с выравненными частицами. Такие зерновые корма, как кукуруза и пшеница, необходимо измельчать на дробилках с установкой сит, диаметр отверстий которых должен составлять 5-6 мм, а для ячменя, овса, проса и сорго — 3 мм. Оптимальным размером частиц комбикорма для бройлеров и кур-несушек следует считать 1,2-1,4 мм.
Другим простым способом повышения питательной ценности зерна является его шелушение — отделение пленок с зерна пленчатых культур. Шелушению чаще всего подвергают зерно ячменя и овса. Это позволяет снизить в нем содержание клетчатки в 2 раза и более, повысить уровень протеина на 10-18%, а обменной энергии — на 14-16%. Шелушение позволяет снизить уровень микрофлоры, а также вредных химических веществ, находящихся в поверхностном слое зерна.
Скармливание пленчатых культур молодняку птицы до 30-дневного возраста без шелушения нежелательно, так как это может вызвать закупорку мышечного желудка, что приводит к гибели птицы. Шелуху можно целенаправленно использовать для снижения уровня обменной энергии в рационах птицы при ограниченном кормлении или с целью получения нежирной тушки. Имеются сведения, что вещества, содержащиеся в шелухе овса и ячменя, снижают уровень холестерина в крови птицы и обмен жира.
Шелушение ячменя и овса позволяет увеличить дозу их ввода в комбикорма для взрослой птицы до 40% при допустимой норме зерна в пленке 20-30%, молодняку — до 20-40%, или в 2-8 раз больше, чем необработанного. Согласно последним данным, с отделением пленки у ячменя обменная энергия 100 г зерна повышается с 267 до 281 ккал, или с 11,17 до 11,76 МДж в 1 кг, у овса — с 257 до 287 ккал в 100 г, или с 10,76 до 12,01 МДжв 1 кг. Содержание клетчатки снижается с 5,6 до 2,2%уяч-меня и с 10,3 до 2,2% у овса. При этом установлено, что каждый процент снижения клетчатки увеличивает переваримость органического вещества корма на 1,2-1,6%. Однако следует помнить, что шелушение — энергозатратный технологический прием.
Поджаривание зерна на металлической поверхности является одним из путей температурной обработки. При этом улучшается его запах и вкус, происходит обеззараживание от грибной и бактериальной микрофлоры, крахмал незначительно (на 2-3%) преобразуется в декстрины, переваримость его также возрастает, но на небольшую величину.
Прекрасным компонентом комбикормов являются «взорванные» зерна пшеницы, овса, ячменя, ржи и других культур, особенно для молодняка птицы. Вспученные злаковые зерна по внешнему виду напоминают исходное зерно, увеличенное в размерах в 10 раз в зависимости от его вида и типа, имеют рыхлую структуру с мягкой, пышно вздутой, пористой внутренней массой. Они напоминают вкус и запах поджаренного зерна, обладают высокой водорастворимостью и улучшают переваримость и питательную ценность кормов.
Влаготепловая обработка зерна играет важную роль, улучшая его вкусовые качества, снижая затраты энергии на переваривание корма. Кроме того, тепловая обработка инактивирует ингибитор трипсина, ге-магглютинины, уреазу, сапонины, алкалоиды и др.
Современные технологии термических и гидротермических обработок предусматривают контроль качества по отдельным звеньям процесса с целью предотвращения полной коагуляции белков, деструкции жира и крахмала. Процесс пропаривания зерна осуществляется путем обработки паром при атмосферном давлении, что приводит к его быстрому нагреву и увлажнению. Качественные показатели зерна при таком способе обработки составляют: степень клейстеризации крахмала — 12-13%, количество декстринов увеличивается на 1-1,1%. Пропаривание при атмосферном давлении пара в пределах 10 мин не оказывает влияния на переваримость протеина, более длительный процесс снижает его переваримость.
Фланирование (приготовление хлопьев из пропаренного зерна) приводит к улучшению некоторых качественных показателей. При плющении в пропаренном зерне имеет место механическое разрушение структуры набухших крахмальных зерен, в результате чего степень клейстеризации крахмала дополнительно повышается на 25-30%. Максимальная переваримость крахмала достигается при 100%-ной клейстеризации. Наиболее эффективен способ флакирования при переработке кукурузы и сорго. При этом переваримость крахмала зерна достигает 70-100%.
Плющение зерна овса повышает его переваримость с 76,7 до 81%, пшеницы — с 62,9 до 87%, ячменя — с 52,2 до 75,2%. Переваримость крахмала этих культур возрастает соответственно до 99,1; 99 и 98,8%.
Обработка зерна электрогидротермическим методом способствует повышению (на 12-14%) кормовой ценности по сравнению с гидротермической обработкой зерна. Данная обработка предусматривает предварительное плющение зерна с целью нарушения структуры, увеличения площади поверхности и создания предпосылок для усиления процессов влагопереноса. Затем проводят увлажнение зерна, после чего оно проходит обработку в переменном электрическом поле. В результате обработки получается мягкий микробилогически чистый корм с приятным хлебным запахом. Данный способ обработки увеличивает содержание редуцирующих сахаров в зерне на 6-7, сахарозы — на 29-38, декстринов — на 28-29, степень клейстеризации крахмала — на 33-38%.
Микронизация является одним из прогрессивных способов обработки зерна инфракрасным излучением в течение 35-60 с. Термин «микронизация» введен в связи с тем, что при обработке зерна из специальных горелок излучаются микроволны. Фактически микронизация представляет собой сочетание термической и гидротермической обработок зерна. Процесс осуществляется следующим образом. Из бункера через дозирующее устройство зерно поступает на транспортерную ленту, которая перемещает его под серией горелок с керамическими радиаторами, обогреваемых газовоздушной смесью и излучающих инфракрасные лучи (длина волны 2-6 мк). Могут использоваться и специальные кварцевые галогенные лампы. Они обеспечивают интенсивный нагрев зерна в течение 30-45 с до температуры свыше 100° С, при которой вода переходит в парообразное состояние и вызывает интенсивную вибрацию молекул. Возникает трение, в процессе которого быстро вырабатывается внутреннее тепло и за счет испаряющейся воды возрастает давление. За время прохождения по транспортеру
зерно становится мягким, разбухает и растрескивается. Биополимеры зерна (углеводы, белки) подвергаются тем же структурным изменениям, которые происходят при их гидротермической и баротермической обработке. Содержание сахаров и набухаемость крахмала увеличивается в 2-4 раза, количество декстринов возрастает на 5-6% при обработке зерна кондиционной влажности и на 10-12% — увлажненного или пропаренного зерна. Отмечается некоторое снижение водо- и солерастворимых фракций за счет денатурации белка, но переваримость белка практически не снижается. Микронизированное зерно, благодаря снижению влажности, хорошо сохраняется и легко смешивается с другими компонентами.
Высокая эффективность использования микронизированной ржи, ячменя в комбикормах установлено в опытах на цыплятах-бройлерах. Особенно перспективна обработка инфракрасным излучением сои. Обработки зерна в течение 80 с практически полностью инактивирует ингибитор трипсина. Одновременно инактивируются липоксигеназа и уреаза, причем активность жирорастворимых витаминов почти не претерпевает изменений.
При обработке зерна электромагнитными лучами (СВЧ-обработка) происходит объемный бесконтактный нагрев продукта. Процесс осуществляется с высокой скоростью, и в зависимости от мощности излучения и времени экспозиции значительно снижается уровень антипи-тательных веществ в зерне. Так, изучение СВЧ-обработки зерна вики, содержащей высокий уровень цианогенных гликозидов (более 7 мг в 100 г) и ингибиторов трипсина (более 100 мг на 100 г сухого вещества), мощностью электромагнитного излучения 85, 255, 425, 595 и 850 Вт и временной экспозиции от 1 до 9 мин показало, что обработки в течение 5 мин при мощности 255-595 Вт достаточно, чтобы уровень синильной кислоты в зерне снизился на 45-58%, а ингибиторов трипсина — на 77%. Такой режим не оказывает отрицательного влияния на содержание в зерне вики протеина и аминокислот. Использование вики, обработанной электромагнитными лучами, значительно улучшает сохранность поголовья и продуктивные качества птицы.
Обработка зерна нута СВЧ-полем полностью инактивирует в нем ингибитор трипсина. Посредством СВЧ-обработки зерна достигается его стерилизация, улучшается доступность аминокислот, увеличивается энергетическая питательность.
Существует целый ряд и других способов подготовки зерна к скармливанию. Так, проращивание зерна используют, как правило, в племенном птицеводстве. Проращиванием достигается осахаривание крахмала, увеличение количества растворимых соединений и образование в зерне витаминов. Так, содержание рибофлавина в пророщенном зерне в течение 2-3 дней возрастает в 10-20 раз, никотиновой кислоты — в 3 раза, биотина, пиридоксина, пантотеновой кислоты, инозита и холина — в 2 раза. При выращивании зерна в течение 6-7 дней в проросшей массе существенно возрастает содержание каротиноидов и витамина Е. Кроме того, пророщенное зерно богато ферментами, аминокислотами и фито-гормонами. При проращивании зерна повышается (на 8-10%) биологическая ценность протеина за счет перераспределения отдельных аминокислот в пользу незаменимых.
Зерно можно проращивать двумя способами. При первом способе зерно проращивают в течение 2 дней до наклева ростков. При втором зерно проращивают в течение нескольких дней до появления зеленого ковра, высота которого за 7-8 дней может достигать 15-20 см. Для активизации процесса прорастания зерна используют различные методы: обрабатывают зерно ультразвуком, электромагнитными полями, растворами щелочей, электроактивированной водой, а также растворами различных солей. Нормальный рост, развитие ростков, образование в них биологически активных веществ зависят от спектрального состава света, а также питательных сред. Проращивают чаще всего овес, ячмень, пшеницу. В пророщенном зерне ржи существенно снижается содержание полисахаридов некрахмальной природы, поэтому оно, в отличие от непророщенного зерна, не вызывает диареи у кур.
Дрожжевание является эффективным способом повышения протеиновой и В-витаминной питательности зерна. В дрожжеванной массе содержание полноценного белка возрастает в 1,5-2 раза, а витаминов группы В — в 3-7 раз. При дрожжевании следует поддерживать оптимальную температуру (25 °С), при которой в течение 6 ч в 1 г корма вырастает 110 млн дрожжевых клеток. Понижение температуры приводит к увеличению кислотности массы. При хорошем дрожжевании содержание органических кислот в корме составляет 1,0-1,2%, в том числе доля молочной кислоты от общего количества кислот составляет 85%, остальные 15% приходятся на уксусную, муравьиную и масляную кислоты. Дрожжеванный корм богат лизином, аргинином, гистидином, но в нем мало метионина. Его лучше скармливать 2 раза в день в количестве 10-20% суточной нормы. Кислотность массы не должна превышать 3-4°.
Заслуживают внимания и другие способы обработки зерна: гамма-облучение (для улучшения переваримости клетчатки), осолаживание
(применяется для кормов, содержащих повышенное количество крахмала, с целью нормализации пищеварения и аппетита), автоклавирование (для разрушения танинов), аммонизация (для детоксикации хлопкового шрота, снижения содержания танинов и обезвреживания кормов, пораженных токсинами и плесенями) и др. Однако они не нашли пока большого распространения.
Экструзионная обработка компонентов комбикормов является особенно эффективной. Этот процесс играет важную роль не только при обработке зерна, но и при производстве комбикормов, при переработке мясных продуктов, рыбы, отходов птицеводства, так как при этой обработке достигается полное уничтожение сальмонелл.
Экструзия относится к термомеханическим способам обработки зерна и комбикормов. Под экструзией подразумевается обработка зерна высоким давлением и температурой на пресс-экструдерах, что значительно повышает усвояемость питательных веществ, уменьшает содержание в зерне неусвояемых и антипитательных соединений, улучшает органолептические показатели. Процесс экструзии заключается в том, что измельченное зерно увлажняется или пропаривается, а затем попадает в пресс-экструдер, где под действием высокого (25-30 атм) давления и трения разогревается до 120-180° С и превращается в гомогенную массу. При выходе из пресс-экструдера из-за большого перепада давления гомогенная масса вспучивается, происходит ее «взрыв».
Компанией «Инста-Про» (США) разработаны сухие экструдеры, которые позволяют под давлением (до 40 атм) производить тепловую обработку кормов. Процесс занимает менее 30 с, и за это время сырье успевает пройти несколько стадий обработки: тепловую, стерилизацию и обеззараживание, измельчение и смешивание, частичное (до 50%) обезвоживание, стабилизацию, текстурацию и профилирование. Конечный продукт после экструдирования имеет влажность 8-10%, содержит 15-20% декстринов, крахмал полностью клейстеризуется, благодаря чему его переваримость возрастает в 2-2,5 раза. Экструдирование способствует практически полному обеззараживанию зерна от грибной и бактериальной микрофлоры, повышает доступность аминокислот, переваримость клетчатки. Экструдирование увеличивает (на 8-15%) энергетическую ценность зерна, улучшает его вкусовые качества, инактивирует антипи-тательные вещества бобовых (ингибиторы трипсина и химотрипсина), рапса (глюкозинолаты, эруковая кислота), люпина (алкалоиды), снижает уровень фитиновой кислоты и др. Благодаря экструдированию ржи ее уровень в комбикормах для кур удается довести до 40%.
Сое принадлежит особое место в кормлении птицы. Растение содержит 35-45% белка с большой долей незаменимых аминокислот и растительного жира (13-20%). В то же время соя не используется в составе комбикормов в натуральном виде из-за содержания ингибиторов трипсина и химотрипсина (около 20 мг/г), которые связывают пищеварительные ферменты протеолитического действия в неактивные комплексы, уменьшая тем самым переваримость белков. Кроме того, в сое содержатся липоксидазы, гемагглютинины, аллергены, уреаза. Экструзия позволяет довести уровень уреазы до pH 0,1 -0,2, инактивировать ингибиторы трипсина. Экструзию сои проводят в течение 25-30 с при температуре около 140° С. В настоящее время в нашей стране разработана технология экструдирования сои для получения как полножирового, так и полуобезжиреиного продукта.
Обработка зерновых и других компонентов комбикорма в экспандерах обеспечивает глубокое преобразование структуры и свойств сырья. Оно может быть конечной технологической операцией как при производстве комбикормов, так и в составе линии гранулирования. Экспандеры по сравнению с оборудованием для экструдирования имеют более высокую (до 30 т/ч) производительность. Принцип действия экспандера аналогичен принципу действия экструдера, однако режимы обработки различаются.
Принцип получения экспандированного корма состоит в следующем. Готовый корм, предварительно увлажненный до 26% и разогретый до 800° С, пропускается через экспандер, из него он выходит в виде хлопьев и комочков и подается в охладитель с последующим измельчением для приготовления экспандата или направляется в пресс-гранулятор. Процесс экспандирования проходит при температуре 105-135° С и давлении 10 МПа. В готовом продукте улучшается питательность и санитарные показатели: атакуемость крахмала повышается почти в 2 раза, переваримость протеина — на 10-20%, общая грибковая и бактериальная обсемененность снижается на 85-99%. Все это способствует более полной ассимиляции питательных веществ комбикорма, причем с меньшей затратой энергии на процесс пищеварения.
Преимуществами техники экспандирования являются: улучшение качества гранул, возможность использования экспандированного комбикорма без его гранулирования, возможность использования в большом количестве жидких компонентов, сохранность биологически активных веществ, уничтожение микробов, благодаря чему не требуется применения консервантов, высокая питательная ценность комбикорма, экономичность процесса. Экспандированным кормом может быть монокомпонент, причем с большим содержанием клетчатки (отруби, шрот), любая зерновая культура, БВМК, комбикорм. Экспандированный комбикорм не образует пыли, легко растворяется в воде, сохраняет стабильность при транспортировке, имеет большую поверхность частиц и пористую структуру, что обеспечивает более легкое проникновение желудочного сока и ферментов.
Комбикорма скармливают птице в трех формах: сухой рассыпной, гранулированный и влажная мешанка. Последняя форма, как правило, используется в фермерских хозяйствах или при работе с водоплавающей птицей.
При транспортировке, хранении рассыпных комбикормов наблюдается самосортирование, распыление, слеживание и ряд других отрицательных явлений. Поэтому один из путей рационального использования комбикормов — их производство в гранулированном виде. Гранулированный комбикорм имеет меньший объем, в нем лучше сохраняются питательные вещества, улучшаются его санитарные качества. При гранулировании возрастает (на 4,5%) энергетическая ценность корма, в его состав можно вводить низкопитательные компоненты, а также малотехнологичные, в частности жиры. Гранулирование обеспечивает экономию до 10% комбикормов.
Гранула представляет собой полный набор всех компонентов комбикорма, поедается целиком, в то время как при кормлении рассыпным комбикормом птица склевывает в первую очередь частицы зерна и другие крупные компоненты, оставляя мелкоизмельченные, в том числе микродобавки.
При гранулировании рассыпной комбикорм подвергается гидротермической обработке и прессованию, что существенно влияет на изменение его структурно-механических свойств и питательности. Однако наряду с повышением питательной ценности гранулированных комбикормов отмечается частичное разрушение витаминов, аминокислот, снижение содержания биологически активных веществ и их активности. Как правило, гранулированные комбикорма используют в бройлерном производстве.
В последние годы в птицеводстве предприняты попытки использования цельного зерна ячменя и пшеницы в комбикормах. Введение цельного зерна в рацион птицы нормализует пищеварение, регулирует скорость прохождения корма и процесс всасывания питательных веществ, благодаря чему повышается (на 5-6%) использование корма. Показано, что при использовании цельного зерна в рационах племенного молодняка мясных
кур в период ограниченного кормления корм дольше задерживается в желудочно-кишечном тракте, при этом увеличивается масса желудка, подавляется развитие микроорганизмов за счет увеличения кислотности химуса. Использовать цельное зерно необходимо начиная с 5-7-недельного возраста (10%), увеличивая постепенно до 20% в 8-13 нед, затем до 30% в 14-17 нед и снижая до 20% в 18-26 нед. При этом курочки равномерно растут, дружно вступают в яйцекладку. В рационы бройлеров можно вводить до 20-25% цельного зерна начиная с 28-дневного возраста.
Таким образом, существует много различных способов подготовки кормов к скармливанию, а также повышения их питательной ценности. Применять их следует исходя из цели, которую преследует тот или иной способ: уничтожение ингибирующих и антипитательных веществ, улучшение вкусовых качеств, повышение доступности питательных веществ и т.д.