Глава б СВОЙСТВА ПОЧВ
6.1. Поглотительная способность почв
Под поглотительной способностью почв следует понимать способность поглощать пары, газы, растворенные вещества, задерживать взмученные в почвенном растворе коллоидальные частицы минеральных и органических веществ, грубые суспензии и живые микроорганизмы.
Поглотительную способность почв обусловливают процессы адсорбции (поглощение вещества из газовой и жидкой сред поверхностным слоем твердого тела); абсорбции (поглощение веществ почвенным раствором); хемосорбции (поглощение веществ сорбентом в результате образования химической связи между молекулами сорбента и сорбируемого вещества); биологического поглощения веществ корнями растений и микроорганизмами и др.
В почве находятся грубые дисперсии минеральных, органических и органо-минеральных частиц с диаметром более 0,02 нм, образующие в почвенной воде суспензии; более мелкие частицы с диаметром 0,02—0,0001 нм — почвенные коллоиды и частицы менее 0,0001 нм, которые образуют молекулярные растворы (1 нанометр = 10~9 м). Дисперсные системы почвы, обладающие большой поверхностной энергией, электрокинетическими свой-етвами, обусловливают поглотительную способность почв.
Совокупность различных компонентов почвы, участвующих 1! процессах поглощения, академик К. К. Гедройц назвал почвенным поглощающим комплексом, сокращенно ППК. Он выделил б видов поглотительной способности почв: механическую, физическую, физико-химическую или обменную, химическую и биологическую.
7126 Евтефеев
Механическая поглотительная способность — это свойст почвы, как любого пористого тела, задерживать в своей тол| твердые частицы, взмученные в фильтрующейся воде, разме|| которых превышают размеры почвенных пор. Это свойство зав* сит от размеров и форм почвенных пор, обусловленных грануле метрическим и агрегатным составами, плотностью почвы. Песч! ные почвы обладают слабой механической поглотительной cit| собностью, а глинистые поглощают почти все частицы размере более 0,001 мм.
Физическая поглотительная способность — это свойство чай тиц твердой фазы почв поглощать молекулы газов и растворе1| ных в воде веществ. Это свойство называют молекулярной адсорбцией. Она обусловлена большой поверхностной энергие!| Вещества, молекулы которых поглощаются физически на по верхности соприкосновения двух фаз (твердой и жидкой, твер дой и газообразной), накапливаются на поверхности тверды] частиц почвы и понижают свободную энергию (поверхностне натяжение), называют поверхностно-активными. Эти веществ испытывают положительную физическую адсорбцию. К ним от носятся органические кислоты, спирты, водорастворимые высо] комолекулярные органические соединения, молекулы которыГ состоят из гидрофильной и гидрофобной частей.
Физически поглощаются почвой пары и газы из газообразЗ ной фазы. По энергии поглощения пары воды и газы располага! ются в следующий ряд:
Н20 > NH3 > С02 > N02 > Н2 = 02
Легко поглощаются твердой фазой почвы пары воды с выде| лением теплоты смачивания. Сухими участками твердой фазь почвы поглощаются газы. Наиболее высокой энергией поглоще-] ния обладает аммиак, что имеет большое значение в закрепле-^ нии в почве аммиачных форм азотных удобрений.
Вещества, повышающие поверхностную энергию, отталкива-1 ются от почвенных частиц, испытывают отрицательную физиче-J скую адсорбцию. К ним относятся неорганические кислоты,! соли, основания. Например, нитраты, хлориды почти не погло-1 щаются почвой и могут при промывном водном режиме вымы-| ваться из почвенного профиля. Это необходимо учитывать при! расчете норм и сроков внесения нитратных форм азотных удоб-J рений в конкретных условиях.
Почва хорошо поглощает дымные и газообразные отравляю-ие вещества, что имеет природоохранное значение.
физико-химическая, или обменная, поглотительная способность, по определению К. К. Гедройца, — свойство почвы обменивать некоторую часть катионов, содержащихся в твердой фазе, на эквивалентное количество катионов почвенного раствора. Этот обмен происходит по схеме:
Са2+
[ППК]^г. + 5КС1 [ППК]5К+ + СаС12 + MgCl2 + НС1
Обменное поглощение катионов имеет следующие закономерности.
1. Обмен происходит в эквивалентных количествах по законам обменных химических реакций.
2. Поглощенный катион может быть вытеснен и замещен другим катионом почвенного раствора, имеющим большую энергию поглощения.
3. Энергия поглощения и вытеснения катионов зависит от их валентности, массы атома и радиуса иона. С увеличением валентности, т. е. силы атома катиона образовывать химические связи с другими атомами, возрастает энергия поглощения:
м+ < м2+ < м3+
Среди катионов с одинаковой валентностью энергия поглощения возрастает с увеличением массы атома. Энергия поглощения зависит от гидратированности катиона. Определен следующий ряд катионов по возрастанию энергии поглощения:
Li+ < Na+ < NH; < К+ < Mg2+ < Са2+ < Н+ < А13+
Исключение составляет ион водорода, у которого энергия поглощения выше, чем у двухвалентных катионов. В водном растворе ион водорода образует гидроксоний (Н30+), который обладает высокой энергией поглощения.
Большое значение в поглощении катионов имеет их концентрация в почвенном растворе. Катионы с меньшей энергией по-Т-'Ющения могут поглощаться только при более высокой их концентрации в почвенном растворе по сравнению с другими катионами, обладающими большей энергией поглощения.
V =-
ЕКО
• 100.
4. Обменное поглощение имеет обратимость, поглощен! катионы могут обратно вытесняться в почвенный раствор зам щенными катионами при повышении их концентрации в пс венном растворе.
5. Скорость обмена катионов в почвенном растворе на вне!! них поверхностях почвенного поглощающего комплекса мгь венная. Но обмен катионами может продолжаться и более тельное время, если поглощение происходит внутри кристалл ческих решеток минералов, что зависит от периодическо| увлажнения, высушивания и температуры почвы. Кроме тог при поглощении почвой какого-либо катиона, например натр! может увеличиваться диспергирование структурных агрегато| что увеличит емкость поглощения катионов.
Максимальное количество катионов, удерживаемое почвой! обменном состоянии, К. К. Гедройц назвал емкостью катионнГ го обмена (ЕКО), которую выражают в мг • экв на 100 г почвы.|
Количество всех обменных катионов, за исключением ионе водорода и алюминия, называют суммой обменных оснований (5), которую тоже выражают в мг • экв на 100 г почвы.
Отношение суммы обменных оснований к емкости катиог ного обмена, выраженное в процентах, называют степенью на§ сыщенности почв основаниями (V):
В различных почвах количество и состав обменных катионов! степень насыщенности основаниями различные, они отражаю! особенности почвообразования. В черноземах типичных высоко| гумусных в составе обменных катионов преобладают основан! Са2+, Mg2+, степень насыщенности основаниями до 100 %.
В дерново-подзолистых почвах с малым содержанием гумуса емкость поглощения низкая, в составе обменных катионов кро4| ме оснований находятся ионы водорода (Н+) и алюминия (А13+)1 Такие почвы имеют низкую степень насыщенности основания^ ми (10—50 %).
В иллювиальных горизонтах солонцов преобладают погло-| щенные натрий и магний, солонцы полностью насыщены осно-| ваниями, имеют щелочную реакцию. Состав поглощенных ка^| тионов определяет многие свойства почв.
13 почвах с кислой реакцией среды, богатых полутораоксида-
алюминия, железа и органическими амфолитоидами, при наличии положительно заряженных коллоидов возможно обменное поГлошение и анионов: NOj, S04~ и др. Обменное поглощение анионов подчиняется такой же закономерности, что и поглощение катионов. По энергии поглощения в порядке возрастания анионы располагаются в следующий ряд:
Cl- = NOJ < S024- < Р034- (НР024-, Н2Р04) < ОН-
Анионы гидроксила и фосфат-ионы имеют более высокую энергию поглощения.
Химическая поглотительная способность или хемосорбция, по определению К. К. Гедройца, состоит в образовании труднорастворимых соединений при взаимодействии замещенных ионов с компонентами почвенного раствора. Образующиеся труднорастворимые соединения закрепляются в почве в виде осадков:
А1(ОН)3 + Н3Р04 -> А1Р044 + ЗН20
Анионы ортофосфорной кислоты активно поглощаются почвой, анионы NOj, СГ очень мало поглощаются почвой химически, так как не образуют с катионами труднорастворимые соединения.
Биологическая поглотительная способность — поглощение различных веществ из почвы в ионной форме корнями растений и микроорганизмами. Ежегодно растения поглощают из почвы Десятки и сотни килограммов различных элементов с 1 га. В природных условиях эти элементы возвращаются в почву с растительным опадом. В земледелии большая часть поглощенных элементов отчуждается из почвы с урожаем.
Благодаря избирательному поглощению элементов растениями осуществляются перемещение и аккумуляция веществ в верхНих горизонтах почвенного профиля. Емкость катионного поглощения корневой системы растений колеблется от 10 до 80 мг • экв Ь|а 100 г. Бобовые растения обладают большей емкостью поглощеНИя по сравнению со злаковыми.
Биологическое поглощение изменяет концентрацию и состав Почвенного раствора, его равновесие и влияет на состояние почтенного поглощающего комплекса, удерживает в почве от вымы-1,111151 элементы питания растений.
6.2. Кислотность, щелочность и буферность почв
Кислотность почв — это способность подкислять почвенн раствор при наличии в почве различных кислот, а также обме! ных ионов водорода и катионов, образующих гидролитичес? кислые соли. Различают актуальную кислотность, определяем^ значением pH почвенного раствора или водной вытяжки и ц тенциальную кислотность, обусловленную находящимися в noi венном поглощающем комплексе в обменно-поглощенном с( стоянии катионами Н+ и А13+. |
Актуальная кислотность обусловливается наличием в по? венном растворе свободных кислот, гидролитически кислых d лей и степенью их диссоциации. В большинстве почв она об] словлена угольной кислотой и ее солями. Величина актуальна кислотности выражается в мг • экв • Н+ на 100 г почвы или в р! Для обозначения величины актуальной кислотности к показ телю pH добавляют индекс (рНв или рННг0). Величина актуал: ной кислотности (рНв) в почвах колеблется в пределах от1 до 10. Низкие значения рНв характерны для подзолистых поч: В дерново-подзолистых и красноземах рНв = 4,5—5,6, черноз^ мах, каштановых почвах — 6,5—7,5, в карбонатных почвах, о лонцах рНв > 8,5.
Для большинства сельскохозяйственных культур благопри ная реакция водной вытяжки при рНв = 6,4—7.
Интересные данные о зависимости урожайности яров пшеницы от величины рН„ получены профессором Л. М. Бурл; ковой (1984). На основании многолетних стационарных опыто] и маршрутных исследований на черноземах Алтайского Приоб] был установлен высокий коэффициент зависимости урожайн сти яровой пшеницы от величины рНв в слое почвы 0—20 с] (табл. 15).
Таблица 15. Урожайность яровой пшеницы в зависимости от значения рНв на черноземах Алтайского Приобья (Л. М. Бурлакова, 1984) рНвв слое 0—20 смУрожайность, т/гарНв в слое 0—20 смУрожайность, т/га | <6,30,6—0,87,1—7,50,9—1,1 1 6,4—6,52,1—2,37,6—8,00,6—0,8 J) 6,6—7,0001гоо>8.1<0,5 ’Потенциальную кислотность делят на две части по способу определения: обменную и гидролитическую.
Обменная кислотность определяется количеством титруемых ионов Н+ и А13+ в вытяжке в нейтральной соли (1н. КС1) или ветчиной рНс солевой вытяжки в 1н. КС1, где индекс «с» — означает, что реакция определяется в солевой вытяжке из почвы:
к+
[ППК]^ + 4НС1 «-> [ППК] ? + А1С13 + НС1
АГ*
А1С13 + ЗН20 А1(ОН)3 + ЗНС1
Образующаяся соляная кислота характеризует обменную кислотность почвы. Для кислых почв значение рНс может снижаться до 3 и даже ниже.
Гидролитическая кислотность определяется количеством вытесняемых ионов водорода и алюминия гидролитически щелочной солью (CHjCOONa — уксусно-кислый натрий):
[ППК]"5* + 4CH3COONa + ЗН20
-? [ППК]4Иа+ + 4СН3СООН + А1(ОН)34-
Образующаяся уксусная кислота характеризует величину гидролитической кислотности, которую выражают в мг • экв • Н+ на 100 г почвы и обозначают Нг. Гидролитическая кислотность включает в себя актуальную и потенциальную кислотности.
Сильно кислые почвы необходимо известковать. Вносимая в почву известь насыщает ППК ионом Са2+ и нейтрализует кислотность.
Щелочность обусловливается наличием в почвенном растворе гидролитически щелочных солей: карбонатов и гидрокарбонатов Щелочных и щелочноземельных металлов: Na2C03; NaHC03; Са(НС03)2 и содержанием обменного Na+ в почвенном поглощающем комплексе.
Различают актуальную и потенциальную щелочность почвы.
Актуальная щелочность обусловливается содержанием в п°чвенном растворе гидролитически щелочных солей, которые Ри Диссоциации создают повышенную концентрацию гидро-
ксил-цонов:
Na2C03 + 2Н20 Н2С03 + 2Na+ + 20Н‘
Актуальную щелочность определяют титрованием водн<! вытяжки из почвы 0,01н раствором серной кислоты в присутс! вии метилоранжа и выражают в мг • экв на 100 г почвы. При о ределении актуальной щелочности потенциометром в водн^ вытяжке ее выражают значением рНв.
Потенциальная щелочность почв обусловливается содержа^ ем обменного Na+, который может вытесняться другими кати* нами и подщелачивать почвенный раствор: ,
[ППК]^; + Н2С03 [ППК]”; + Na2C03
з
з
Na2C03 + 2Н20 Н2С03 + 2Na+ + 20Н'
Повышенная концентрация гидроксил-ионов в почвенной растворе оказывает отрицательное влияние на усвоение элемем тов питания растениями и микроорганизмами и на свойства пом вы. Катионы натрия усиливают пептизацию почвенных коллом дов, ухудшают водные и физические свойства почвы. Щелочноста почв нейтрализуют внесением гипса (CaS04) • 2Н20, которья нейтрализует физиологически-щелочные соли почвенного раса твора и насыщает ППК ионами Са2+ с вытеснением иона Na+1 почвенный раствор с образованием нейтральной соли (Na2S04). I Буферность почв — способность сохранять определенную концентрацию ионов водорода (pH), противостоять изменению концентрации почвенного раствора, кислотно-щелочного 1 окислительно-восстановительного состояния. Буферность поч| обусловливается содержанием в почвенном растворе слабых ш слот, оснований и их солей, а также процессами ионного обмен! почвенного раствора с почвенным поглощающим комплексом (ППК). I
Буферность имеет большое значение в поддержании свойств почв, благоприятных для роста и развития растений. Например! при внесении в почву высоких доз минеральных удобрений воЗ| можно изменение концентрации почвенного раствора и реакции среды до критического состояния для растений. Но благодаря буферное™ почвы концентрация почвенного раствора поддер! живается в благоприятном состоянии. |
Буферность почв зависит от их минералогического и грану| лометрического составов, содержания гумуса, емкости поглоще| ния и состава обменных катионов. |
Почвы, насыщенные основаниями, обладают высокой бл ферностью против подкисления, а почвы, в ППК которых нахо|
тся катионы водорода и алюминия, устойчивы против подщелачивания:
[ППК]Са+ + 2НС1 = [ППК]? + СаС12 [ППК]«: + Са(ОН)2 = [ППК]Са2+ + 2НгО
Глинистые почвы с большим содержанием гумуса, имеющие высокую емкость катионного обмена, обладают высокой буфер-
ностью.
Легкие, малогумусовые почвы, обладающие низкой емкостью поглощения, имеют низкую буферность. Такие почвы могут резко изменять концентрацию почвенного раствора и его реакцию при внесении физиологически кислых или физиологически щелочных удобрений.
Высокая буферность может отрицательно влиять на эффективность приемов мелиорации почв. Например, буферность оказывает сопротивление приемам по регулированию реакции почвенного раствора и состава обменных катионов твердой фазы подзолистых почв и солонцов, так как для преодоления буферное™ требуется внесение повышенных доз химических мелиорантов. Например, при известковании кислых почв в зависимости от гидролитической кислотности и гранулометрического состава дозы извести составляют от 2 до 8 т/га.
6.3. Структура почв
В твердой фазе почвы находятся обломки горных пород, частицы первичных и вторичных минералов, гумусовых веществ и органо-минеральных соединений, которые называют механическими элементами. Эти частицы размером от 0,0001 до 10 мм и оолес, могут находиться в почве в свободном состоянии или соединенные в структурные агрегаты различной формы, величины и прочности.
По форме различают три типа структуры: кубовидная — структурные отдельности равномерно развиты по трем взаимно ерпендикулярным осям; призмовидная — отдельности развиты 0 вертикальной оси; плитовидная — отдельности развиты пре-lyiHecTBeHHo по двум горизонтальным осям и укорочены в вертельном направлении.
Каждый из этих типов по характеру ребер, граней и размеМ I подразделяется на более мелкие единицы. Например, кубовиднщ I структура подразделяется на глыбистую, комковатую, ореховМ тую, зернистую, которые по размерам поперечника делят щ виды. Комковатая — неправильной округлой формы с шероховя той поверхностью, подразделяется на виды: крупнокомковатуюЯ поперечнике 3—10, комковатую — 1—3 и мелкокомковатую -Ж 0,25—1,0 мм. Я
Зернистая — более или менее правильной формы, острограни ная, подразделяется на виды: крупнозернистую (гороховатую) я поперечнике 3—5, зернистую (крупитчатую) — 1—3 и мелкозер» нистую — 0,25—1 мм. ?
6.3.1. Агрономическое значение структуры ?
Значение структуры определяется размерами структурных аг-Я регатов, их пористостью, сложением, связностью и водопрочное стью. Структурной считается почва, содержащая больше полови-]! ны водопрочных макроагрегатов размером 0,25—10 мм, обла-Ц дающих высокой пористостью (>45 %). Ц
Микроагрегаты размером 0,25—0,01 мм тоже считаются цен-* ными при условии их пористости и водопрочности. Микроагре-1 гаты менее 0,01 мм ухудшают водопроницаемость и воздухообмен в почвах.
Чтобы почва удовлетворяла потребности растений в воде и ] составе почвенного воздуха, эти структурные агрегаты должны ! быть пористыми, водопрочными и иметь благоприятное сложе- | ние. Имеются в виду не отдельные механические частицы мине- ] ралов и органических веществ, а склеенные, «сцементирован- ] ные» в комочки различной величины и формы под влиянием различных факторов. 1
В агрономическом отношении лучшими считаются комковатая и зернистая мезо- и микроструктура с размерами агрегатов от 0,01 до 10 мм, которые устойчивы к механическому воздействию, способны не разрушаться при увлажнении, обладают высокой порозностью и имеют рыхлое сложение.
При низкой связности и водопрочности структурные агрегаты разрушаются при обработке почвы и выпадении осадков. При сильном увлажнении такая почва заплывает, а при высыхании образует корку, плохо проницаемую для воздуха.
дгрономическое значение структуры состоит в том, что она [3ывает большое влияние на пористость, плотность сложения, °одный, воздушный, тепловой, оксилительно-восстановитель-V микробиологический, питательный режимы и физико-механические свойства почвы.
6.3.2. Образование структуры
Формирование структуры почвы происходит в процессе почвообразования. На образование структуры оказывают влияние следующие факторы: физико-механические, физико-химические, химические и биологические.
К физико-механическим факторам относят переменное высушивание и увлажнение почвы, замерзание и оттаивание почвенного раствора, давление корней растений, влияние роющих животных и воздействие почвообрабатывающих орудий. Эти факторы наряду с положительным влиянием могут оказывать и разрушающее действие на структуру почвы.
Более важная роль в формировании структуры принадлежит физико-химическим факторам — коагуляции и цементирующему воздействию почвенных коллоидов. Органические и минеральные коллоидные вещества скрепляют механические элементы, коагулируют их необратимо. Коагуляторами в почвах являются двух- и трехвалентные катионы Са2+, Mg2+, Fe3+, Al3+.
Если почвенные коллоиды (частицы <0,0001 мм) насыщаются двух- и трехвалентными катионами, то они формируют структурные агрегаты, неразмываемые водой. Более прочно склеиваются почвенные частицы органическими коллоидами, насыщенными катионами кальция и железа.
Коллоиды, насыщенные одновалентными катионами, особенно Na+, обусловливают пептизацию структурных агрегатов, т- е. распад на более мелкие, вплоть до первичных, частицы.
К химическим факторам, оказывающим склеивающее и цементирующее воздействие на почвенные частицы, относится образование труднорастворимых химических соединений (карбоната кальция, гидроокиси железа, силикатов магния и др.). Эти химические соединения способствуют агрегации почвенных частиц и пропитывают структурные агрегаты почвы, цементируют их, делают водопрочными.
Среди биологических факторов структурообразования главе ная роль принадлежит растительности, особенно травянистой* которая не только разделяет почву на комочки, но и является основным источником органических веществ для образования! гумуса. Под травянистой растительностью формируются хорошей оструктуренные почвы (лугово-черноземные, черноземы). Ком-Я ковато-зернистая мезо- и микроструктура этих почв состоит иэ| агрегатов, пропитанных гуматами кальция, противостоящих раз^ мывающему действию воды, так как гуматы кальция являются главными клеящими и цементирующими веществами при фор-^ мировании агрегатов. !
На формирование структуры положительное влияние оказы-, вают дождевые черви и микроорганизмы. Частички почвы, про- j двигающиеся по кишечному тракту червей, уплотняются и выде-^ ляются в виде маленьких водопрочных комочков, называемыхJ капролитами.
Продукты жизнедеятельности микроорганизмов и разложения их тел после отмирания обладают цементирующими свойствами и способствуют структрообразованию в почвах. 1
6.3.3. Причины разрушения и приемы восстановления структуры почвы
Структура почвы может ухудшаться и утрачиваться под влиянием следующих факторов: механических, физико-химических и биологических.
В земледелии механическое разрушение структуры происходит при воздействии машин и орудий, передвижении животных, выпадении обильных дождей и града.
Физико-химические причины разрушения структуры появляются при насыщении почвенного поглощающего комплекса (ППК) одновалентными катионами (Na NH/, Н+), которые вытесняют катионы Са2+, Mg2+.
В этом случае происходит пептизация почвенных коллоидов и разрушение структурных агрегатов при увлажнении почвы. При высыхании таких почв они уплотняются в монолиты, почвы становятся бесструктурными.
К биологическим причинам разрушения структуры относятся процессы минерализации гумуса почвы микроорганизмами. В условиях экстенсивного землепользования часто получается
отрицательный баланс гумуса в почвах, не вносятся органические и минеральные удобрения. В таких условиях происходят большие минерализационные потери почвенного гумуса. А гумус является главным склеивающим веществом при образовании структуры почвы.
Разрушение структуры почв зависит от условий почвообразования. Например, при формировании подзолистых почв под пологом хвойных лесов в результате промывного водного режима и действия кислых соединений происходит разрушение легкорастворимых веществ, первичных и вторичных минералов в верхних горизонтах, вынос илистых частиц в нижние иллювиальные горизонты или за пределы почвенного профиля, в грунтовые воды. Подзолистый горизонт обедняется полуторными оксидами, илистыми частицами, имеет сильную ненасыщенность основаниями, кислую реакцию, приобретает плитчатую структуру или становится бесструктурным.
Восстановление и улучшение структуры почв при сельскохозяйственном использовании осуществляется в основном агротехническими методами.
Прежде всего, необходимо улучшать свойства почв, которые оказывают решающее отрицательное влияние на структуру. В кислых почвах необходимо насыщать ППК основаниями путем внесения расчетных норм извести. Обогащение ППК обменным кальцием приводит к нейтрализации излишней кислотности и улучшению структуры почвы.
В солонцовых почвах и солонцах необходимо замещать в ППК обменный натрий на кальций внесением расчетных доз гипса.
Большое влияние на улучшение структуры почвы оказывают органические удобрения: навоз, торф, зеленые растения (сидера-ты). Органические вещества являются источником для образования гумуса, который положительно влияет на образование водопрочной структуры. В сельскохозяйственном использовании почв системы земледелия должны предусматривать бездефицитный или положительный баланс гумуса. Воспроизводство гумуса в условиях интенсивного земледелия должно осуществляться за счет ежегодно создаваемого органического вещества, внесения органических и минеральных удобрений.
В структуре посевных площадей необходимо планировать возделывание многолетних трав, особенно бобовых, которые оказывают большое положительное влияние на образование во-
допрочной структуры по сравнению с однолетними культурами Многолетние травы оставляют в почве больше органических вн ществ, благоприятных для деятельности микроорганизмов и от разования гумусовых веществ. щ
Для сохранения структуры почвы большое значение имев
рациональная система обработки почвы, проведение агротехник ческих приемов в состоянии физической спелости почвы. Я
Для ослабления разрушения структуры почвы орудиями об! работки и воздействием тяжелой техники применяют рацио] нальные технологии выращивания культур. Такие технологии предусматривают минимализацию обработки почвы, сокраще! ние проходов агрегатов по полю за счет использования широко! захватных и комбинированных агрегатов с многоцелевыми рабо| чими органами и тракторов на широких гусеницах и шинах низ! кого давления. |
6.4. Общие физические свойства почв 1
К общим физическим свойствам относят плотность почвы,! плотность твердой фазы и пористость почвы. 1
Плотностью почвы называют массу единицы объема абсо-| лютно сухой почвы в естественном сложении. При определении | плотности взвешивают абсолютно сухую почву в единице объе- 1 ма со всеми порами. Плотность характеризует степень уплотнения почвенных частиц и агрегатов. Ее выражают в граммах на 1 см3 и обозначают буквой dv. Плотность почвы зависит от гранулометрического состава, содержания органического вещества и структурного состояния. Плотность минеральных почв составляет от 1,0 до 1,8 г/см3, верхних горизонтов черноземных почв — 1,0—1,2, нижних горизонтов — 1,3—1,6 г/см3. Оптимальная плотность почвы для большинства культурных растений — 1,0—1,2 г/см3.
От плотности почвы зависят водный, воздушный, тепловой режимы и биологическая активность. С увеличением плотности уменьшается общая пористость почвы и особенно объем пор аэрации, ухудшается воздухообмен, снижается водопроницаемость.
Измерение плотности почвы необходимо для расчета пористости, запасов воды и питательных веществ.
Плотностью твердой фазы почвы называют отношение массы твсрД°й фазы почвы без всяких пор в абсолютно сухом состоя-ии к массе равного объема воды при 4 °С. Плотность твердой фазы почвы определяют пикнометрическим методом путем вытеснения воды из пикнометра навеской абсолютно сухой почвы, выражают плотность твердой фазы почвы в г/см3 и обозначают буквой d. Ее величина зависит от минералогического состава и содержания органических веществ в почвах. В среднем она составляет 2,4—2,65 г/см3.
Определение плотности твердой фазы почвы необходимо для расчета пористости почвы, кроме того, по ее величине можно судить о соотношении минеральных и органических веществ в
почве.
Пористость почвы — отношение объема всех пор в единице объема почвы в естественном состоянии ко всему объему вместе с твердой фазой и порами, выраженное в процентах. Обозначается буквой Робш.
Общую пористость (или скважность) почвы рассчитывают по показателям плотности почвы и плотности ее твердой фазы по формуле
•100,
р -
общ
где Л.бщ — общая пористость почвы, % объема почвы;
dv — плотность почвы;
d — плотность твердой фазы почвы.
Для общей пористости суглинистых и глинистых почв Н. А. Качинский предложил следующую шкалу:
• >70 % — избыточно пористая;
• 55—65 % — отличная в пахотном слое;
• 50—55 % — удовлетворительная для пахотного слоя;
• <50 % — неудовлетворительная для пахотного слоя;
• 40—25 % — очень низкая, характерная для уплотненных и иллювиальных горизонтов.
Количество пор в почве и их соотношение по размерам определяет, прежде всего, водные свойства и воздухообмен, от коТоРых зависят окислительно-восстановительные процессы и питание растений.
Общая пористость подразделяется на капиллярную и некапиллярную. Капиллярная пористость создает водоудерживающую
способность почвы, обусловленную явлением смачивания и Л верхностным натяжением воды (менисковыми силами). КапЛ лярные силы начинают проявляться в порах диаметром <8 Л но значительно возрастают в порах диаметром <0,01 мм. Неш пиллярные поры между структурными агрегатами чаще всего Я полнены воздухом, поэтому их называют порами аэрации. Вол из этих пор в основном просачивается по профилю почвы пЛ действием сил гравитации. 1
В агрономическом отношении нужно, чтобы при общей пя ристости 55—60 % большая часть приходилась на капиллярну! и 20—25 % — на некапиллярную. Ч
Если при влажности почвы, близкой к НВ, объем пор аэра ции будет меньше 20 % от общей пористости, то нужно улучи шать структуру почвы агротехническими приемами. Пористосп аэрации — это часть общей пористости почвы, заполненная воя духом. Определив общую пористость почвы в любом слое и объ ем воды в этом слое, рассчитывают пористость аэрации по фор) муле ]
общ
аэр 1 общ г
К физико-механическим свойствам почв относят пластичность, липкость, набухание, усадку, связность, твердость и удельное сопротивление при обработке. Количественная оценка этих свойств необходима для выбора оптимальной технологии ее культивации.
Пластичность почвы — это ее способность к деформации без крошения под действием внешней силы и без расплывания при увлажнении и сохранению приданной формы после устранения этой силы. Пластичность проявляется в определенном для каждого типа почвы диапазоне влажности, имеющем нижний и верхний пределы (границы пластичности). Сухие и переувлажненные почвы не обладают пластичностью.
Высокое качество обработки почвы достигается до начала проявления пластичности. Показатель верхней границы апатичности почвы нужен для определения устойчивости к водной эрозии, так как при влажности выше верхнего предела пластичности почва начинает расплываться по склонам.
Пластичность возрастает при увеличении в ППК обменного натрия, а при насыщении ППК катионами кальция, магния и увеличении содержания гумуса — снижается. Поэтому для улучшения технологических свойств высокопластичных почв нужно проводить гипсование засоленных и известкование кислых почв, вносить высокие дозы органических удобрений.
Липкость — свойство влажной почвы прилипать к поверхности прикасающихся к ней предметов. Она увеличивает сопротивление почвы при обработке, ухудшает качество работ, затрудняет движение транспорта.
Липкость определяется величиной силы, необходимой для отрыва металлической пластинки от поверхности почвы, и выражается в г/см2. Она начинает проявляться при определенной для каждого типа почв влажности, зависит от состава обменных катионов и гумусности почвы.
Липкость почвы >5 г/см2 при капиллярной влагоемкости считается очень высокой. Хорошее качество обработки почвы достигается при влажности, не превышающей начала проявления прилипания, когда почва находится в состоянии физической спелости, хорошо крошится на комочки. Среднесуглинистые почвы находятся в состоянии физической спелости при следующей влажности: дерново-подзолистые — 12—21 %, серые лесные — 15—23, черноземы — 15—24, каштановые — 13—25 %.
Для снижения липкости почвы нужно улучшать состав обменных катионов, насыщать ППК кальцием и повышать гумус-ность почв.
Набухание почв — их свойство увеличивать свой объем при Увлажнении воздушно-сухой почвы. Большой набухаемостью отличаются глинистые почвы с преобладанием в составе минералов монтмориллонита и вермикулита. Наибольшую набухае-мость имеют солонцы, ППК которых насыщен катионами натрия.
Набухание — отрицательное свойство почв, приводящее к выпиранию почвы и разрушению ее структуры. Для снижения набухаемости почв необходимо проводить гипсование солонцовых почв и вносить органические удобрения.
Усадка почв — свойство уменьшать свой объем при высуцц вании. Зависит от тех же причин, что и набухание. Это тоже о| рицательное свойство почв, приводящее к сильному уплотнени| почв при высыхании, образованию трещин, разрыву корней ра<| тений и потере влаги.
Связность почв — способность противостоять разъединений частиц почвы внешними силами. Почвы, обладающие свойствой большой усадки, имеют и высокую связность. Пептизация поч| венных коллоидов увеличивает удельную поверхность почвы силы сцепления между частицами, что повышает ее связность.
Для уменьшения связности солонцовых почв нужно улуч| шать состав обменных катионов путем гипсования и внесения органических удобрений. В глинистых почвах нужно улучшат структуру внесением органических удобрений.
Удельное сопротивление почвы — сопротивление, оказываемое! почвой, приходящееся на 1 см2 поперечного сечения пласта, подрезаемого и оборачиваемого плугом, выражаемое в килограммах! на 1 см2. Оно зависит от гранулометрического состава, физи-| ко-химических свойств почвы, ее влажности и колеблется от 0,2| до 1,2 кг/см2.
Эту важную физико-механическую характеристику нужно учитывать, например, при составлении норм выработки и расхода топлива для тракторов, при конструировании почвообрабатывающих орудий.
Известкование кислых почв, гипсование щелочных изменяют состав поглощенных оснований, улучшают физические и физико-механические свойства, в том числе уменьшают и удельное сопротивление почвы. Выращивание многолетних трав, внесение органических удобрений, возделываниие сидеральных культур — все эти мероприятия улучшают физические и физико-механические свойства почв.
Большое значение для улучшения физико-механических свойств почв и снижения их отрицательного влияния на качество полевых работ имеет выбор сроков и приемов обработки почвы в зависимости от ее влажности, внедрение минимизации обработок.
Больше книг — больше знаний!
Заберите 20% скидку на все книги Литрес с нашим промокодом
ПОЛУЧИТЬ СКИДКУ