4.2.1. Воздух как экологический фактор для наземных организмов
4.2.1. Воздух как экологический фактор для наземных организмов
Низкая плотность воздуха определяет его малую подъемную силу и незначительную спорность. Обитатели воздушной среды должны обладать собственной опорной системой, поддерживающей тело: растения – разнообразными механическими тканями, животные – твердым или, значительно реже, гидростатическим скелетом. Кроме того, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры. Жизнь во взвешенном состоянии в воздухе невозможна.
Правда, множество микроорганизмов и животных, споры, семена, плоды и пыльца растений регулярно присутствуют в воздухе и разносятся воздушными течениями (рис. 43), многие животные способны к активному полету, однако у всех этих видов основная функция их жизненного цикла – размножение – осуществляется на поверхности земли. Для большинства из них пребывание в воздухе связано только с расселением или поиском добычи.
Рис. 43. Распределение членистоногих воздушного планктона по высоте (по Дажо, 1975)
Малая плотность воздуха обусловливает низкую сопротивляемость передвижению. Поэтому многие наземные животные использовали в ходе эволюции экологические выгоды этого свойства воздушной среды, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий. Летают наземные животные в основном с помощью мускульных усилий, но некоторые могут и планировать за счет воздушных течений.
Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов.
Анемофилия – древнейший способ опыления растений. Ветром опыляются все голосеменные, а среди покрытосеменных анемофильные растения составляют примерно 10 % всех видов.
Анемофилия наблюдается в семействах буковых, березовых, ореховых, вязовых, коноплевых, крапивных, казуариновых, маревых, осоковых, злаков, пальм и во многих других. Ветроопыляемые растения имеют целый ряд приспособлений, улучшающих аэродинамические свойства их пыльцы, а также морфологические и биологические особенности, обеспечивающие эффективность опыления.
Жизнь многих растений полностью зависит от ветра, и расселение совершается с его помощью. Такая двойная зависимость наблюдается у елей, сосен, тополей, берез, вязов, ясеней, пушиц, рогозов, саксаулов, джузгунов и др.
У многих видов развита анемохория– расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т. п. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона по аналогии с планктонными обитателями водной среды. Специальные адаптации для пассивного полета – очень мелкие размеры тела, увеличение его площади за счет выростов, сильного расчленения, большой относительной поверхности крыльев, использование паутины и т. п. (рис. 44). Анемохорные семена и плоды растений обладают также либо очень мелкими размерами (например, семена орхидей), либо разнообразными крыловидными и парашютовидными придатками, увеличивающими их способность к планированию (рис. 45).
Рис. 44. Приспособления к переносу воздушными потоками у насекомых:
1– комарик Cardiocrepis brevirostris;
2– галлица Porrycordila sp.;
3– перепончатокрылое Anargus fuscus;
4– хермес Dreyfusia nordmannianae;
5– личинка непарного шелкопряда Lymantria dispar
Рис. 45. Приспособления к переносу ветром у плодов и семян растений:
1– липа Tilia intermedia;
2– клен Acer monspessulanum;
3– береза Betula pendula;
4– пушица Eriophorum;
5– одуванчик Taraxacum officinale;
6– рогоз Typha scuttbeworhii
В расселении микроорганизмов, животных и растений основную роль играют вертикальные конвекционные потоки воздуха и слабые ветры. Сильные ветры, бури и ураганы также оказывают существенное экологическое воздействие на наземные организмы.
Малая плотность воздуха обусловливает сравнительно низкое давление на суше. В норме оно равно 760 мм рт. ст. С увеличением высоты над уровнем моря давление уменьшается. На высоте 5800 м оно равняется лишь половине нормального. Низкое давление может ограничивать распространение видов в горах. Для большинства позвоночных верхняя граница жизни около 6000 м. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно таковы же пределы продвижения в горы высших растений. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности.
В целом все наземные организмы гораздо более стенобатны, чем водные, так как обычные колебания давления в окружающей их среде составляют доли атмосферы и даже для поднимающихся на большую высоту птиц не превышают 1/3 нормального.
Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов чрезвычайно важны ее химические особенности. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1 %, кислород – 21,0, аргон – 0,9, углекислый газ – 0,035 % по объему) благодаря высокой диффузионной способности газов и постоянному перемешиванию конвекционными и ветровыми потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.
Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первично-водными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойотермия животных. Кислород, из-за постоянно высокого его содержания в воздухе, не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефицит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т. п.
Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Например, при отсутствии ветра в центре больших городов концентрация его возрастает в десятки раз. Закономерны суточные изменения содержания углекислоты в приземных слоях, связанные с ритмом фотосинтеза растений. Сезонные обусловлены изменениями интенсивности дыхания живых организмов, преимущественно микроскопического населения почв. Повышенное насыщение воздуха углекислым газом возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко.
В природе основным источником углекислоты является так называемое почвенное дыхание. Почвенные микроорганизмы и животные дышат очень интенсивно. Углекислый газ диффундирует из почвы в атмосферу, особенно энергично во время дождя. Много его выделяют почвы умеренно влажные, хорошо прогреваемые, богатые органическими остатками. Например, почва букового леса выделяет СО2 от 15 до 22 кг/га в час, а неудобренная песчаная всего 2 кг/га.
В современных условиях мощным источником поступления дополнительных количеств СО2 в атмосферу стала деятельность человека по сжиганию ископаемых запасов топлива.
Низкое содержание углекислого газа тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа; этим пользуются в практике тепличного и оранжерейного хозяйства. Однако излишние количества СО2 приводят к отравлению растений.
Азот воздуха для большинства обитателей наземной среды представляет инертный газ, но ряд прокариотических организмов (клубеньковые бактерии, азотобактер, клостридии, сине-зеленые водоросли и др.) обладает способностью связывать его и вовлекать в биологический круговорот.
Рис. 46. Склон горы с уничтоженной растительностью из-за выбросов сернистого газа окрестными промышленными предприятиями
Местные примеси, поступающие в воздух, также могут существенно влиять на живые организмы. Это особенно относится к ядовитым газообразным веществам – метану, оксиду серы, оксиду углерода, оксиду азота, сероводороду, соединениям хлора, а также к частицам пыли, сажи и т. п., засоряющим воздух в промышленных районах. Основной современный источник химического и физического загрязнения атмосферы антропогенный: работа различных промышленных предприятий и транспорта, эрозия почв и т. п. Оксид серы (SО2), например, ядовит для растений даже в концентрациях от одной пятидесятитысячной до одной миллионной от объема воздуха. Вокруг промышленных центров, загрязняющих атмосферу этим газом, погибает почти вся растительность (рис. 46). Некоторые виды растений особо чувствительны к SО2 и служат чутким индикатором его накопления в воздухе. Например, многие лишайники погибают даже при следах оксида серы в окружающей атмосфере. Присутствие их в лесах вокруг крупных городов свидетельствует о высокой чистоте воздуха. Устойчивость растений к примесям в воздушной среде учитывают при подборе видов для озеленения населенных пунктов. Чувствительны к задымлению, например, обыкновенная ель и сосна, клен, липа, береза. Наиболее устойчивы туя, тополь канадский, клен американский, бузина и некоторые другие.
Данный текст является ознакомительным фрагментом.