Всасывание аминокислот.
Всасывание аминокислот.
Происходит путем активного транспорта с участием переносчиков. Максимальная концентрация аминокислот в крови достигается через 30–50 мин после приема белковой пищи. Перенос через щеточную каемку осуществляется целым рядом переносчиков, многие из которых действую при участии Na+-зависимых механизмов симпорта. Причем аминокислоты конкурируют друг с другом за специфические участки связывания. Выяснено, что существуют транспортные системы, переносящие аминокислоты определенного строения: нейтральные с небольшим радикалом, нейтральные с объемным радикалом, кислые, основные и иминокислоты.
В настоящее время, расшифрован механизм транспорта аминокислот в клетки кишечника, мозга, почек, получивший название g-глутамильного цикла Майстера, ключевым ферментом которого является g-глутамилтрансфераза.
Всосавшиеся аминокислоты попадают в портальный кровоток и, следовательно, в печень, а затем в общий кровоток. Освобождается кровь от свободных аминокислот очень быстро – уже через 5 мин 85–100% их оказывается в тканях. Особенно интенсивно аминокислоты поглощаются печенью и почками.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 496. Почему кодируемых аминокислот двадцать? (XII)
Глава 496. Почему кодируемых аминокислот двадцать? (XII) Неискушенному Читателю может показаться, что элементы машины генетического кодирования описаны в предыдущей главе настолько детально, что к концу чтения он стал даже как-то утомляться, чувствуя, что несколько
Всасывание моносахаридов в кишечнике
Всасывание моносахаридов в кишечнике Всасывание моносахаридов из кишечника происходит путем облегченной диффузии с помощью специальных белков-переносчиков (транспортеров). Кроме того, глюкоза и галактоза транспортируются в энтероциты путем вторично-активного
Липиды пищи, их переваривание и всасывание.
Липиды пищи, их переваривание и всасывание. Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности
Наследственные нарушения транспорта аминокислот
Наследственные нарушения транспорта аминокислот Болезнь Хартнупа – нарушение всасывания триптофана в кишечнике и его реабсорбции в почечных канальцах. Так как триптофан служит исходным продуктом для синтеза витамина РР, то основные проявления болезни Хартнупа –
Превращение аминокислот микрофлорой кишечника
Превращение аминокислот микрофлорой кишечника Микроорганизмы кишечника располагают набором ферментативных систем, отличных от соответствующих ферментов тканей организма человека и катализирующих самые разнообразные превращения пищевых аминокислот и не
Пути обмена аминокислот в тканях
Пути обмена аминокислот в тканях Аминокислоты – это бифункциональные соединения, содержащие аминную и карбоксильную группу. Реакции по этим группам являются общими для различных аминокислот. К ним относят:1. по аминной группе – реакции дезаминирования и
Трансаминирование аминокислот
Трансаминирование аминокислот Трансаминирование – реакции переноса a-аминогруппы с аминокислоты на a-кетокислоту, в результате чего образуются новая кетокислота и новая аминонокислота. Реакции катализируют ферменты аминотрансферазы. Это сложные ферменты, коферментом
Дезаминирование аминокислот
Дезаминирование аминокислот Дезаминирование аминокислот – реакция отщепления a-аминогруппы от аминокислоты с выделением аммиака. Различают два типа реакций дезаминирования: прямое и непрямое.Прямое дезаминирование – непосредственное отщепление аминогруппы от
Непрямое дезаминирование аминокислот
Непрямое дезаминирование аминокислот Большинство аминокислот не способно дезаминироваться в одну стадию, подобно глутамату. Аминогруппы таких аминокислот перносятся на ?-кетоглутарат с образованием глутаминовой кислоты, которая затем подвергается прямому
Декарбоксилирование аминокислот
Декарбоксилирование аминокислот Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию. Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами, нуждающимися в пиридоксальфосфате в качестве кофермента.
Пути катаболизма углеродного скелета аминокислот
Пути катаболизма углеродного скелета аминокислот Трансаминирование и дезаминирование аминокислот ведет к образованию безазотистых углеродных скелетов аминокислот – ?-кетокислот. В состав белков входят 20 аминокислот, различающихся по строению углеводородного
Глава 25. Метаболизм отдельных аминокислот
Глава 25. Метаболизм отдельных аминокислот Метаболизм метионина Метионин – незаменимая аминокислота. Метильная группа метионина – мобильный одноуглеродный фрагмент, используемый для синтеза ряда соединений. Перенос метильной группы метионина на соответствующий
Роль печени в обмене аминокислот и белков
Роль печени в обмене аминокислот и белков Печень играет центральную роль в обмене белков и других азотсодержащих соединений. Она выполняет следующие функции:1. синтез специфических белков плазмы: - в печени синтезируется: 100 % альбуминов, 75 – 90 % ?-глобулинов, 50 %
Обмен свободных аминокислот в головном мозге
Обмен свободных аминокислот в головном мозге Аминокислоты играют важную роль в метаболизме и функционировании ЦНС. Это объясняется не только исключительной ролью аминокислот как источников синтеза большого числа биологически важных соединений, таких как белки,
Глава 496. Почему кодируемых аминокислот двадцать? (XII)
Глава 496. Почему кодируемых аминокислот двадцать? (XII) Неискушенному Читателю может показаться, что элементы машины генетического кодирования описаны в предыдущей главе настолько детально, что к концу чтения он стал даже как-то утомляться, чувствуя, что несколько