Опыт Юнга

We use cookies. Read the Privacy and Cookie Policy

Пожалуй, самой яркой демонстрацией странностей квантового мира может служить эксперимент, который был проведен в начале 1800?х годов Томасом Юнгом с целью доказательства волновой природы света. Для этого луч света направлялся через пару узких прорезей и затем попадал на экран, установленный на некотором отдалении. Вместо того чтобы высветиться на экране в виде двух ярких полос, он образовывал последовательность расплывчатых светлых и темных участков.

Опыт Юнга

Это рассматривалось как доказательство волновой природы света, так как пятна на экране представляли собой интерференционный узор. Когда две волны на поверхности воды сталкиваются под некоторым углом друг к другу, возникает характерный узор. Если в точке соприкосновения обе волны находятся в верхней точке, их фазы складываются, образуя дополнительный подъем. Если обе находятся в нижней точке, в месте соприкосновения образуется более глубокая впадина. Если же в момент соприкосновения одна волна находится в верхней фазе, а вторая – в нижней, они взаимно компенсируются, и в этом месте можно наблюдать ровную поверхность воды. Это и есть интерференция. Очевидно, свет в этом опыте вел себя так же: темные полосы на экране обозначали компенсацию фаз, а светлые – их сложение.

Такая интерференция была бы невозможна, если бы свет представлял собой поток частиц. Представьте себе поток мелких частиц, направляемых в стену с двумя прорезями.

Они просто пролетели бы сквозь щели в прямом направлении, не образуя никаких узоров. Но, как вы уже знаете, свет – это поток фотонов. Почему же происходит интерференция? К слову, даже если вы будете запускать фотоны через щель по одному, они все равно создадут интерференционный узор. С чем же они в таком случае взаимодействуют?

Вот тут-то и начинаются квантовые странности. Это происходит из-за того, что фотон проходит сквозь обе щели и интерферирует сам с собой! Вспомните, что квантовая частица может избрать любой возможный путь от А до Б, но с разной вероятностью. Поскольку фотон не имеет точного местоположения, а только комбинацию вероятностей, он проходит через обе щели. Вероятность того, где он может быть найден, распределяется подобно волне, и именно эта вероятность создает интерференционный эффект частиц.

Если вы поставите специальные детекторы, которые будут определять, через какую именно щель прошел фотон, интерференционный узор исчезнет, а на экране появятся яркие точки, чего и следовало бы ожидать, если бы фотоны были просто частицами. При проведении измерений фотон вынужден занимать определенное положение в пространстве, а не распределяться по нему в соответствии с вероятностью, поэтому проходит только сквозь одну щель. Достаточно лишь обратить внимание на фотон, чтобы он полностью изменил свое поведение.