Молекулярная теория строения вещества

Первые представления о том, что вещество состоит из отдельных неделимых частиц, появились в глубокой древности. Например, в I тысячелетии до н. э. философские школы Древней Индии признавали не только существование первичных неделимых частиц вещества, но и их способность соединяться в новые частицы. Наибольшее же влияние на развитие науки оказала древнегреческая атомистика, создателями которой были Левкипп (V в. до н. э.) и Демокрит (460–370 до н. э.). Излагая учение Демокрита, Аристотель писал: «Причинами всех вещей являются определенные различия в атомах. А различий этих три: форма, порядок и положение». В работах самого Аристотеля встречается понятие о миксисе — однородном соединении, образованном из различных веществ. Позднее философ Эпикур (342–271 до н. э.) ввел понятие о массе атомов и их способности к самопроизвольному отклонению во время движения.

Древние ученые догадывались, что сложное тело — это не простая смесь атомов, а целостное образование, наделенное новыми свойствами. Но понятия о «многоатомных» частицах, промежуточных между атомами и сложными телами, у греков еще не было.

В Средние века интерес к античному атомизму ослабел: церковь обвиняла древних греков в «ложном» учении о том, что мир возник из случайных сочетаний атомов, а не по воле Божьей. Возрождение атомизма началось в XVI–XVII вв. в связи с общекультурным и научным подъемом. В этот период передовые ученые разных стран — Г. Галилей в Италии, П. Гассенди во Франции, Р. Бойль в Англии — провозгласили принцип «не искать истину в Священном писании, а непосредственно читать книгу природы».

Гассенди ввел понятие молекулы, под которым понимал качественно новое образование, составленное путем соединения нескольких атомов. Бойль разработал концепцию корпускулярного строения вещества, согласно которой мир частиц-корпускул, их движение и «сплетение» весьма сложны, как целесообразно устроенные механизмы.

Вдохновленный открытиями Бойля, русский ученый М. Ломоносов (1711–1765) развил и обосновал учение о материальных атомах и корпускулах, приписав атомам не только неделимость, но и способность к движению и взаимодействию. «Частицы должны различаться массою, фигурою, движением, силою инерции и расположением», — писал ученый. Корпускулы однородных тел, по Ломоносову, «состоят из одинакового числа одних и тех же элементов, соединенных одинаковым образом… Корпускулы разнородны, когда элементы их различны или соединены различным образом либо в различном числе».

Последователь Ломоносова, английский ученый Д. Дальтон (1766–1844), рассматривал атом как мельчайшую частицу элемента, отличную от атомов других элементов прежде всего массой. Химическое соединение, согласно его учению, представляет собой совокупность сложных, составных «атомов», содержащих определенное, характерное лишь для данного вещества количество атомов каждого элемента. Дальтон даже составил первую таблицу атомных масс, но она оказалась неточной в силу того, что представления ученого о составе молекул опирались на произвольные, упрощенные допущения (так, для воды он принял формулу ОН).

В 1808 г. француз Ж. Л. Гей-Люссак сформулировал закон объемных отношений, согласно которому реагирующие газы соединяются таким образом, что соотношение между их объемами, а также объемом продукта реакции выражается простыми целыми числами (при условии, что температура и давление остаются постоянными). Например, 2 объема водорода соединяются с 1 объемом кислорода, давая 2 объема водяного пара; 3 объема водорода и 1 объем азота образуют 2 объема аммиака и т. д. Сейчас мы записали бы уравнения реакций просто: 2Н2 + О2 = 2Н2О; 3Н2 + N2 = 2NH3. Но в те времена не было ни четкого разграничения понятий атома и молекулы, ни обозначений химических элементов и формул их соединений.

Гей-Люссак ничего не сказал о том, в виде каких частиц газы участвуют в реакциях. Тогда считалось, что все газы состоят из атомов, а поскольку размеры атомов у тех или иных элементов неодинаковы, то в равных объемах различных газов может «поместиться» разное число атомов. Такой взгляд противоречил экспериментальным наблюдениям.

Проблему удалось решить итальянскому химику Амедео Авогадро (1776–1856). Тщательно проанализировав результаты экспериментов Гей-Люссака и других ученых, он высказал гениальную идею: «Имеются очень простые отношения между объемами газообразных веществ и числом простых и сложных молекул, образующих эти вещества. Первая гипотеза, которая возникает в связи с этим, состоит в предположении, что число составных молекул любого газа всегда одно и то же в одном и том же объеме». Простыми молекулами ученый называл атомы, из которых, по его мнению, построены сложные, составные молекулы газообразных веществ.

В 1814 г. Авогадро изложил свою теорию в виде закона, который получил его имя: «Равные объемы газообразных веществ при одинаковом давлении и температуре содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул». Последнее уточнение означало, что, измеряя плотность разных газов, можно определять относительные массы молекул, из которых они состоят. Например, если в 1 л водорода содержится столько же молекул, сколько и в 1 л кислорода, то отношение плотностей этих газов равно отношению масс молекул водорода и кислорода.

Закон Авогадро дал химикам возможность экспериментально устанавливать состав молекул газообразных соединений. Так, из найденного опытным путем соотношения объемов водорода, кислорода и паров воды (2:1:2) логически можно сделать два вывода: молекулы исходных газов состоят из двух атомов, а молекула воды — из трех, и тогда верно уравнение 2Н2 + О2 = 2Н2О; молекулы водорода одноатомны, а кислорода и воды — двухатомны, и тогда верно уравнение 2Н + О2= 2НО. (Кстати, даже через 50 лет после работ Гей-Люссака некоторые ученые продолжали настаивать на том, что формула воды НО, а не Н2О.) Разрешить дилемму удалось лишь на основании последующих опытов, из результатов которых следовало, например, что равные объемы водорода и хлора образуют удвоенный объем хлороводорода. Это опровергло предположение об одноатомности водорода: реакция Н + Cl = НСl не дает удвоенного объема НСl, следовательно, молекулы водорода (а также хлора и кислорода) двухатомны и верно уравнение 2Н2 + О2 = 2Н2О.

Удивительно, что такие простые доводы не смогли убедить некоторых химиков в справедливости закона Авогадро, и его теория десятилетиями оставалась незамеченной. Лишь с развитием молекулярно-кинетической теории газов ученые определили, что энергия удара молекул о стенки сосуда зависит не от массы самих молекул, а только от температуры: несмотря на то что легкие молекулы движутся быстро, а тяжелые медленно, в условиях неизменной температуры кинетическая энергия у них одинакова. Следовательно, равное число молекул в данном объеме оказывает одинаковое давление, и наоборот — равное давление двух газов свидетельствует об одинаковом числе молекул.

Одними из первых, кто начал борьбу за реформу теоретической химии, были французские ученые Ш. Жерар (1816–1856) и О. Лоран (1807–1853): именно они разработали правильную систему атомных масс и химических формул.

В 1856 г. русский ученый Д. Менделеев, а затем итальянский химик С. Канниццаро (1826–1910) предложили метод вычисления молекулярной массы соединений по удвоенной плотности их паров относительно водорода, и к 1860 г. этот метод прочно вошел в химическую практику, что имело решающее значение для утверждения атомно-молекулярной теории:

1. Вещества состоят из молекул. Молекулой называется наименьшая частица вещества, обладающая его химическими свойствами. Многие физические свойства вещества — температуры кипения и плавления, прочность, твердость и т. д. — обусловлены поведением молекул и действием межмолекулярных сил.

2. Молекулы состоят из атомов, которые соединяются в определенных отношениях.

3. Атомы и молекулы находятся в постоянном самопроизвольном движении.

4. Молекулы простых веществ состоят из одинаковых атомов (O2, O3, P4, N2 и т. д.); молекулы сложных веществ — из разных атомов (H2O, HCl).

5. В ходе химических реакций происходит изменение состава молекул и перегруппировка атомов, в результате чего образуются молекулы новых соединений.

6. Свойства молекул зависят не только от их состава, но и от способа, которым атомы связаны между собой.

Современная наука развила классическую атомно-молекулярную теорию и пересмотрела некоторые ее положения. Так, ученые установили, что атом не является неделимым бесструктурным образованием и что далеко не во всех случаях частицы, образующие вещество, представляют собой молекулы. Многие химические соединения (например, соли) в твердом и жидком состоянии состоят из ионов — частиц, в которых общее число положительных протонов не соответствует общему числу отрицательных электронов, что обеспечивает им определенный заряд. Такие вещества, как инертные газы, состоят из отдельных атомов, слабо взаимодействующих между собой даже в жидком и твердом состояниях. А химически чистая вода образована не только отдельными молекулами H2O, но и полимерными молекулами (H2O) ? n; одновременно в ней присутствуют ионы H+ и OH?. Наконец, при нагревании до тысяч и миллионов градусов вещество переходит в особое состояние — плазму, которая представляет собой смесь атомов, положительных ионов, электронов и атомных ядер.

Согласно квантово-механическим представлениям, у атомов в молекуле более или менее неизменным остается только остов, то есть ядро и внутренние электронные оболочки, тогда как характер движения внешних (валентных) электронов коренным образом меняется так, что образуется новая, молекулярная электронная оболочка, охватывающая всю молекулу. Поэтому неизменных атомов в молекулах нет.

Невзирая на все уточнения и дополнения, современная наука сохранила рациональное зерно классического атомно-молекулярного учения: идеи о дискретном строении вещества, о способности атомов соединяться между собой в новые, более сложные образования, а также о непрерывном движении частиц, составляющих вещество.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК