Генетический код

Ученых давно интересовала тайна главного свойства всех живых организмов — размножение. И почему дети — идет ли речь о людях, животных, растениях или микроорганизмах — похожи на своих родителей, бабушек, дедушек, дальних родственников?..

После открытия ДНК — молекулы, которая содержит инструкции для производства белков, выполняющих всю основную работу в клетке, — ученым захотелось выяснить подробности процесса копирования и переноса наследственной информации из ядра в цитоплазму, к месту синтеза белка. Уже было известно, что белки — это полимеры, состоящие из повторяющихся наборов (последовательностей) 20 аминокислот. Все виды животных отличаются друг от друга набором белков в клетках, то есть разными последовательностями аминокислот. Ученые догадывались, что эти последовательности задаются генами — базовыми «кирпичиками» жизни. Но что такое гены, никто в точности не представлял.

Ясность внес один из авторов теории Большого взрыва, физик Георгий Гамов — сотрудник Университета Джорджа Вашингтона. Основываясь на модели двухцепочечной спирали ДНК Уотсона и Крика, он предположил, что ген — это определенный участок ДНК, то есть некая последовательность звеньев?нуклеотидов.

В каждой такой последовательности заключена наследственная информация. Наименьшей ее единицей после нуклеотида являются три соседствующих нуклеотида — триплет. Расположенные один за другим триплеты и составляют ген. Поскольку каждый нуклеотид — это одно из четырех азотистых оснований (аденин — А, гуанин — Г, цитозин — Ц, тимин — Т), нужно было выяснить, как четыре элемента могут кодировать 20 аминокислот. В этом и состояла идея генетического кода.

К началу 1960?х ученые установили, что белки синтезируются из аминокислот в рибосомах — своего рода «фабриках» внутри клетки. Приступая к синтезу белка, фермент приближается к матрице ДНК, распознает информацию, закодированную чередованием нуклеотидов на определенном участке цепи, и синтезирует копию гена в виде маленькой одноцепочечной РНК (ее называют матричной, или мРНК от англ. messenger — переносчик, посланник). Это процесс транскрипции. На следующем этапе мРНК переносит информацию из ядра в цитоплазму, к рибосоме — важнейшей органелле клетки, где синтезируется белок. Внутри рибосомы к кодонам мРНК по принципу комплементарности присоединяются антикодоны транспортной РНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, пептидной связью — сцепляя ??аминогруппу (?NH2) одной аминокислоты и ??карбоксильную группу (?СООН) другой. Получается белок. Это — трансляция. Первичная структура определяет не только способ формирования молекулы белка, но и ее ферментативную, структурную либо регуляторную функцию.

То, что одной аминокислоте соответствуют три нуклеотида, Фрэнсис Крик выяснил в ходе экспериментов с вирусом фаг Т4. Триплет — единица кода — получила название «кодон». Оставалось понять, как действует шифр.

Сделать это удалось ученым М. Ниренбергу и Г. Маттеи, которые искусственно получили (синтезировали) РНК, состоящую из многократно повторяющегося урацила (поли?У), и использовали ее в качестве мРНК. В каждой из 20 пробирок ученые соединили бесклеточный экстракт Е. coli, содержавший все необходимые компоненты для синтеза белка (рибосомы, тРНК, АТФ и прочие ферменты), поли?У и одну из известных аминокислот. Анализ содержимого пробирок показал, что полипептид образовался только в том сосуде, который содержал аминокислоту фенилаланин.

Так было доказано, что кодон УУУ, входящий в мРНК, шифрует аминокислоту фенилаланин. Аналогичные опыты показали, что триплет ЦЦЦ кодирует аминокислоту пролин, а триплет ААА — лизин. Это открытие стало первым шагом к расшифровке генетического кода.

На основании же дальнейших исследований сформировались его основные свойства:

1. Генетический код триплетен: каждый из 64 кодонов представляет собой три нуклеотида и кодирует, то есть шифрует, только одну аминокислоту.

2. Генетический код является вырожденным: каждая аминокислота может шифроваться более чем одним кодоном. Происходит так из?за того, что у кодонов, определяющих одну и ту же аминокислоту, первые два основания фиксированные, а третье «плавает» и может заменяться другим основанием. Лишь метионин и триптофан кодируются всего одним триплетом. Кодон, соответствующий метионину (АУГ), отвечает за считывание и не кодирует аминокислоту, если стоит в начале цепи ДНК. Триплеты УАГ, УАА, УГА вообще не кодируют аминокислот, потому называются бессмысленными, или нонсенс?кодонами.

3. Генетический код неперекрываем — один и тот же нуклеотид не может входить в два рядом стоящих триплета одновременно.

4. Генетический код универсален: одни и те же триплеты кодируют одни и те же аминокислоты у всех живых существ на Земле независимо от уровня их организации.

В 1961 г. Ниренберг и Маттеи впервые доложили о своих результатах на биохимическом конгрессе в Москве. К 1967 г. генетический код полностью расшифровали.

Открытие структуры ДНК и генетического кода переориентировало биологические исследования. Расшифровка генома человека дала антропологам совершенно новый метод изучения эволюции нашего вида. А недавно изобретенный редактор ДНК CRISPR?Cas позволил заметно продвинуть вперед генную инженерию.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК