5.5. КОМПЛЕКСНЫЕ УДОБРЕНИЯ

К комплексным удобрениям относятся удобрения, содержащие два, три и более элементов питания: азот, фосфор, калий, магний, серу и микроэлементы.

В зависимости от содержания компонентов различают двойные (Р + К, N + Р, N + К) и тройные (N + Р + К) комплексные удобрения.

По способу производства эти удобрения подразделяют на сложные, сложносмешанные (комбинированные) и смешанные, а по агрегатному состоянию — на твердые и жидкие.

Сложные удобрения представляют собой одинарные соли, содержащие разные элементы питания, например KN03, (NH4)2HP04 и др. Они не содержат примесей (балласта) и поэтому отличаются высокой концентрацией элементов питания.

Сложносмешанные (комбинированные) удобрения содержат два и более элементов питания, получают их в едином технологическом процессе при взаимодействии азотной, фосфорной и серной кислот с аммиаком, природными фосфатами, солями калия, аммония и др.

Смешанные удобрения получают путем механического смешивания двух или более простых удобрений.

Чем больше общее содержание питательных веществ в удобрении, тем оно ценнее. Высокая концентрация действующих веществ и одновременное содержание нескольких элементов питания—большое преимущество комплексных удобрений.

Себестоимость производства комплексных удобрений (в пересчете на единицу питательного вещества) выше, чем простых удобрений. Однако затраты на доставку, хранение и внесение в почву комплексных удобрений по сравнению с простыми гораздо меньше. В итоге общая стоимость применения комплексных удобрений (с учетом затрат на их производство) примерно на 10% ниже, чем простых.

Наличие в одной грануле комплексных удобрений нескольких питательных веществ способствует их более равномерному распределению по поверхности почвы.

Комплексные удобрения обеспечивают лучшую позиционную доступность питательных веществ корневой системе. Опыты показали, что при раздельном питании азотом, фосфором и калием (при размещении их в разных частях сосуда) кукуруза развивалась хуже и поглощала меньше Р205, чем при его совместном внесении с азотом и калием.

Эффективность равных доз питательных веществ в составе комплексных и смеси односторонних удобрений по действию на урожай растений практически одинакова, с некоторым преимуществом комплексных за счет более равномерного распределения питательных веществ в почве и лучшей их позиционной доступности корневой системе растений.

Для различных культур, почв, климатических и других условий требуются сложные удобрения с разным соотношением и содержанием азота, фосфора и калия. Их характеризуют массовым отношением N : Р205: К20, например 1 : 1,5 : 0,5 (азот принимается за единицу). Иногда удобрение характеризуют отношением N: Р205: К20 в процентах по содержанию действующих веществ элементов, например 12 : 18:6 или 12 — 18 — 6; сумма этих чисел дает общее содержание действующих веществ в удобрении.

Наиболее распространенными являются трехкомпонентные удобрения марок 1:1:1; 1 : 1,5: 1; 1 : 1 : 1,5; 1 : 1,5: 1,5; 1 : 1 :0,5 и двухкомпонентные — 1 : 2,5 :0; 1:4:0; 1 : 1 :0; 0 : 1 : 1; 0 : 1 : 1,5.

Однако соотношение между отдельными компонентами в составе комплексных удобрений не всегда соответствует потребностям культур при выращивании на почвах с различной обеспеченностью этими элементами. В таких случаях необходимо дополнять применение комплексных удобрений внесением односторонних удобрений или приготавливать соответствующие тукосмеси.

5.5.1. СЛОЖНЫЕ УДОБРЕНИЯ

Аммофос — NH4H2P04 (однозамещенный фосфат аммония). Содержит II —12% N и 46—60 % Р205. В нем нет балласта. Получают путем нейтрализации аммиака фосфорной кислотой:

NH3 + Н3Р04 = NH4H2P04.

Недостаток этого удобрения — слишком широкое соотношение между азотом и фосфором, равное 1 : 4 и даже 1 : 5. Это ограничивает возможность его применения, так как отношение азота к фосфору в удобрении должно быть близким к единице и менее, поскольку большинству растений требуется больше азота, чем фосфора.

Диаммофос — (NH4)2HP04 (двузамещенный фосфат аммония). Производство основано на насыщении аммиаком фосфорной кислоты:

2NH3 + Н3Р04 = (NH4)2HP04.

В диаммофосе содержится 18% и более азота и около 50% Р205. Соотношение между азотом и фосфором составляет приблизительно 1 : 2,5. Суммарное содержание азота и фосфора в диаммофосе около 70%. Это самое концентрированное из всех сложных удобрений.

Сравнительные испытания в качестве источников фосфора и азота (с выравниванием доз NPK) аммофоса и диаммофоса под все основные культуры и на основных типах почв показали, что ни в одном случае эти сложные удобрения не уступали эквивалентной смеси из простых удобрений. Наоборот, в большей части опытов эффективность фосфатов аммония была значительно выше.

Фосфаты аммония удобны для локального применения в качестве припосевного или припосадочного удобрения всех культур. Они не содержат сколько-нибудь заметных количеств балласта, не создают высокой концентрации раствора и не повышают существенно его осмотического давления.

Фосфоаммомагнезия — MgNH4P04 • Н20 (магний-аммоний-фос-фат). Слаборастворимое сложное удобрение, содержащее 10,9% N, 45,7 % Р205 и 25,9 % MgO. Нитрификация аммония этого удобрения в почвенных условиях протекает так же быстро, как и других аммонийных удобрений. Пригодно для основного внесения в первую очередь на песчаных почвах, где возможны существенные потери азота из растворимых удобрений и на которых ощущается дефицит магния, а также в теплицах при выращивании овощей на гидропонике.

Полифосфаты аммония. Их получают аммонизацией полифос-форных кислот аммиаком.

До недавнего времени технология производства концентрированного суперфосфата, преципитата и фосфата аммония основывалась на ортосфорной кислоте (Н3Р04), которая в чистом от примесей состоянии содержит не более 54 % Р205. Производимые в настоящее время смеси полифосфорных кислот содержат от 70 до 83 % Р205, что позволяет получать более концентрированные комплексные удобрения.

Процесс образования полифосфорных кислот требует нагревания и вакуума:

Вакуум

Нагревание

3Р04

эН4Р 2Э7 "Ь Н20;

?>Н5РзО102О;

Н3Р044 Р207 нВакуум

J ц 4 1 ' Нагревание

н5РзОю-н^г>ЗНРОз +Н20 и т. д.

Вакуум

В этих реакциях происходит конденсация (уплотнение молекул фосфорной кислоты с выделением воды), поэтому полифосфор-ные кислоты называют конденсированными. В химической промышленности за ними утвердилось еще и название суперфосфорной кислоты, которое, однако, является коммерческим термином и не выражает сущности процесса.

Ряд полифосфорных кислот можно представить следующим образом: НР03 — метафосфорная, Н4Р207 — пирофосфорная,

НзРзОю- триполифосфорная, Н6Р4013 — полифосфорная и т. д. У нас в стране полифосфаты были получены в 1964 г.

Перевозят полифосфорные кислоты в специальных цистернах (железнодорожных и автомобильных) из нержавеющей стали.

Исходным продуктом для производства полифосфатов служит смесь полифосфорных кислот, которые получают из концентрированной ортофосфорной кислоты экстракционного происхождения или из фосфора, добываемого термическим путем. Наиболее концентрированные полифосфорные кислоты образуются на основе термической ортофосфорной кислоты, из экстракционной же получают конденсаты с меньшей концентрацией Р205.

На основе полифосфорных кислот получают тройной суперфосфат (55 % Р205). При аммонизации (насыщении аммиаком) полифосфорных кислот под давлением получают полифосфаты аммония (табл. 89).

89. Характеристика некоторых полифосфатов аммония УдобрениеФормулаNPAN : PAN ++% % Диаммоний пирофосфат(NH4),H,P2071366,91 : 579,9 Триаммоний пирофосфат(nh4),hpa18,362,01 : 3,480,3 Тетрааммоний пирофосфат(NH4)4P,0722,757,71 : 2,580,4 Пентааммоний Триполи-(NH4)3P3Ol(, 2H,018,456,21 : 3,174,6 фосфат ди гидрат

Для практических целей наиболее ценны второй и третий из приведенных полифосфатов аммония, отличающиеся высокой общей концентрацией фосфора и азота и более приемлемым их соотношением. Эти удобрения используют в твердом виде или вводят главным компонентом в состав жидких и суспендированных удобрений благодаря хорошей растворимости.

Особенности структуры полифосфатов позволяют вводить в состав их молекулы несколько элементов минерального питания (азот, калий, кальций), включая микроэлементы. Это открывает широкие перспективы для создания новых видов и форм таких удобрений.

Полифосфаты менее, подвижны в почве, чем ортофосфаты, так как активнее взаимодействуют с почвенными минералами. В почве под влиянием микроорганизмов протекает гидролиз полифосфатов, в результате которого они трансформируются в ортофосфаты.

Гидролиз идет тем интенсивнее, чем выше биологическая активность почв. При пониженных температурах (7—12°С) он протекает медленно, а с повышением температуры усиливается.

Метафосфат калия — КР03. Содержит до 60 % Р205 и до 40 % К20. Высококонцентрированное сложное удобрение. Получают путем разложения хлористого или углекислого калия ортофосфор-ной кислотой при температуре 450 °С. В ряде опытов с картофелем, сахарной свеклой, ячменем, льном и другими культурами получен хороший эффект от применения этого удобрения.

Калийная селитра —KN03 (азотнокислый калий). Содержит около 13 % N и до 45 % К20, не содержит балластных веществ и отличается хорошими физическими свойствами. В качестве источника калия особенно ценна для культур, чувствительных к хлору. Применяют в закрытом грунте.

Недостаток калийной селитры — широкое соотношение между азотом и калием (1 : 3,5). Поэтому при ее использовании требуется дополнительное внесение азотных удобрений, а если необходимо дать все три питательных элемента одновременно, то и фосфорных.

Получение KN03 основано на обменном разложении NaN03 и

ксг

NaN03 + КС1 -> NaCl + KN03.

В качестве исходного сырья используют хлористый калий и упаренные растворы нитрата натрия, которые образуются в качестве побочного продукта в процессе производства азотной кислоты.

5.5.2. СЛОЖНОСМЕШАННЫЕ УДОБРЕНИЯ

Сложносмешанные удобрения получают путем обработки смесей готовых порошкообразных удобрений аммиаком, аммиакатами и кислотами (фосфорной, полифосфорной, азотной и серной). При механическом смешивании этих компонентов происходит их химическое взаимодействие.

Нитрофосы и нитрофоски. Их получают при обработке фосфатного сырья азотной кислотой. В результате такого взаимодействия образуются кальциевая селитра и монофосфат кальция с примесью дикальцийфосфата. Но эта смесь из-за высокой гигроскопичности кальциевой селитры еще не является полноценным удобрением: она отличается повышенной влажностью и плохо рассеивается. Поэтому необходима дальнейшая обработка смеси, чтобы перевести азот из кальциевой селитры в другие соединения. Существует несколько способов такой обработки.

1. В полученную смесь — пульпу, когда она еще горячая и кашицеобразная, вводят сульфат аммония. Он реагирует с кальциевой селитрой, образуются аммиачная селитра и безводный сернокислый кальций. Если эту смесь высушить и подвергнуть грануляции, получится удобрение, которое называется нитрофос.

Для получения тройного удобрения в горячую пульпу добавляют в необходимой пропорции хлористый калий. Частично он взаимодействует с аммиачной селитрой с образованием хлористого аммония и калийной селитры:

КС1 + nh4no3 = NH4C1 + KN03.

После высушивания и грануляции получается удобрение сульфатная нитрофоска. Оно обладает хорошими физическими свойствами и может быть использовано под большинство культур на всех почвах. Полученная смесь содержит СаНР04 • 2Н20, Са(Н2Р04)2 • Н20, NH4N03, NH4C1, KN03, CaS04.

2. При добавлении в пульпу аммиака и серной кислоты достигается тот же результат, что при введении сульфата аммония. Но аммиак может вызвать вследствие местного подщелачивания среды частичную ретроградацию образовавшихся усвояемых солей фосфорной кислоты. Чтобы этого избежать, одновременно в пульпу прибавляют небольшое количество растворимой соли магния. Введение хлористого калия позволяет получить удобрение, которое называется сернокислой нитрофоской, очень близкое по составу и свойствам к сульфатной нитрофоске.

3. Перспективным способом является добавление к пульпе аммиака и фосфорной кислоты. Нитрат кальция превращается в одно- и двузамещенные фосфаты кальция и аммиачную селитру; кроме того, образуется аммофос.

В этом удобрении самое высокое содержание водорастворимой фосфорной кислоты (до 80 %), в двух предыдущих — около 55 % от усвояемой. При добавлении хлористого калия получается фосфорная нитрофоска.

В нашей стране выпускается несколько марок гранулированных нитрофосок. В таблице 90 приведена их характеристика.

90. Характеристика шпрофосфатов НитрофосфатыNРА(усвояемая)К20Содержание водораствори-мой Р205, %* % Нитрофос марки А23,51750 Нитрофос марки В241450 Нитрофоска марки А (16 : 16 : 13)16-1716-1713-1455 Нитрофоска марки Б (13 : 10 : 13)12,5-13,5ос14012,5-13,555 Нитрофоска марки В (12 : 12 : 12)11-1210-1111-1255 *В % от общего содержания Р205.

Размер гранул нитрофосок 1—4 мм; они достаточно прочные и при кондиционировании путем добавления небольших количеств минеральных масел и припудривания тальком или тонкоразмоло-тым известняком не слеживаются при перевозке и хранении. Нитрофоски вносят в качестве основного удобрения, припосевного в рядки, а также в подкормку. Их эффективность практически такая же, как и эквивалентных количеств смеси простых удобрений.

Нитроаммофос — NH4H2P04 + NH4NO3. Получают при нейтрализации аммиаком смесей азотной и фосфорной кислот. Содержание азота и фосфора равное (примерно по 23 % каждого). При введении в смесь калийных компонентов получают нитроаммофоски. Содержание N, Р205 и К20 составляет по 16—17%. Эти удобрения почти не имеют балласта. Количество водорастворимых фосфатов 90 % и более. Применяют эти удобрения теми же способами, что и нитрофоски. Эффективность нитроаммофосок такая же, как и смесей простых удобрений.

Карбоаммофоска. Получают ее из мочевины, фосфорной кислоты, аммиака и солей калия. Она содержит до 60 % питательных веществ (по 20 % N, Р205 и К20). Ее производят со следующим соотношением азота, фосфора и калия: 1:1:1; 1,5 : 1 : 1; 2:1:1; 1 : 1,5: 1.

Без добавления калия получают карбоаммофос, содержащий до 60 % питательных веществ (по 30 % N и Р205). Соотношение азота и фосфора может быть такое же, как и в карбоаммофоске.

Нитроаммофосфаты, получаемые на основе аммофоса, и кар-боаммофосфаты (табл. 91) выпускают в гранулированном виде (размер гранул 1—3 мм).

91. Состав комбинированных удобрений, получаемых на основе фосфатов аммония, % УдобрениеN?А 1к3о Нитроаммофос: марка А (1 : 1)2323— марка Б (1 : 1,5)1624— Нитроаммофоска сорта I (сумма NPK 50 %)161618 Нитроаммофоска сорта II (сумма NPK 44 %)141416 Карбоаммофос (сумма NP 60 %)3030— Карбоаммофоска сорта I (сумма NPK 60 %)202020

Фосфаты мочевины. Получают при взаимодействии термической фосфорной кислоты и синтетической мочевины. Производство основано на способности последней образовывать комплексы с фосфорной кислотой: (CONH2)2 • (NH4)2HP04 (содержит по 27 % N и Р205). Хорошо растворимы и применяются всеми способами.

Можно дополнительно вводить аммиак и добавлять хлорид калия. Удобрение содержит до 36 % N, 48 % Р205 или по 24 % N и

р2о5.

Эти удобрения представляют собой механическую смесь удобрений, содержащую два и более питательных элементов. Сухое смешивание удобрений — наиболее доступный, простой и экономичный метод получения комплексных удобрений.

По своим агрохимическим качествам смешанные удобрения практически не отличаются от сложных. Преимуществом их является возможность выпуска очень широкого ассортимента удобрений с любыми соотношениями питательных элементов, удовлетворяющими разнообразные требования сельского хозяйства. Например, в странах Западной Европы ассортимент смешанных удобрений включает около 100 марок (сортов), однако наиболее распространены десятки марок.

В зависимости от вида смешанных удобрений общее содержание питательных веществ в тукосмесях может изменяться от 25— 30 % (при использовании простого суперфосфата, сульфата аммония или аммонийной селитры) до 40 % и больше (в смесях на основе более концентрированных удобрений).

В нашей стране в настоящее время имеется несколько способов получения сухих смешанных удобрений:

смешивание непосредственно в хозяйствах при помощи стационарных или передвижных тукосмесительных установок;

использование стационарных высокопроизводительных установок (40—60 т/ч) с перспективой обслуживания нескольких хозяйств; смешивание удобрений на химических предприятиях.

При смешивании твердых удобрений исходные компоненты должны быть сухими и рассыпчатыми; желательно, чтобы они мало различались по крупности и плотности зерен. Материалы, не удовлетворяющие этим требованиям, трудно превратить в однородное удобрение. Смеси, состоящие из зерен разных размеров и неодинаковой плотности, подвержены сегрегации, т. е. они расслаиваются, становятся неоднородными при хранении, перевозке, машинном внесении в почву.

Требования к физико-химическим свойствам смеси определяются рядом факторов: объемами смешивания, сроками и методами приготовления, схемой продвижения удобрений до поля и др.

Возможны два пути использования смешанных удобрений: внесение непосредственно после смешивания и заблаговременное приготовление с последующим хранением.

Используемые при сухом смешивании односторонние и неуравновешенные по составу удобрения должны сохранять сыпучесть, неслеживаемость и гранулометрический состав в процессе транспортировки и при хранении насыпью в течение 6 мес. Содержание влаги не должно превышать в мочевине и аммиачной селитре 0,12%, аммофосе, диаммофосе и хлористом калии 1 %, двойном суперфосфате 3,5 % (при свободной кислотности не бо-

лее 1 %). Количество гранул размером 1—3 мм должно быть не менее 90 %, в том числе диаметром 2—3 мм не менее 50 % и частиц менее 1 мм не более 1 %. Разрушение гранул при смешивании не более 3 %, прочность их не менее 2 МПа (20 кг/см2).

Физические свойства смешанных удобрений можно улучшить введением нейтрализующих добавок: мела, известняка, фосфоритной муки. Однако не все удобрения можно смешивать друг с другом. Особенности физико-химических свойств исходных удобрений часто ограничивают возможность их смешивания.

Например, при смешивании аммиачной селитры с суперфосфатом (в составе которого всегда присутствует некоторое количество фосфорной кислоты) могут выделяться пары азотной кислоты или оксиды азота:

nh4no3 + Н3Р04 = nh4h2po4 + HN03.

Кроме того, образование нитрата кальция ведет к увеличению гигроскопичности смеси:

2NH4N03 + Са(Н2Р04)2 = 2NH4H2P04 + Ca(N03)2 + Н20.

Карбонат и бикарбонат кальция, имеющие щелочную реакцию, и металлургические шлаки, содержащие свободный оксид кальция, нельзя смешивать с аммонийными удобрениями из-за возможных потерь аммиака:

СаО + (NH4)2S04 = 2NH3 + CaS04 + Н20.

При заблаговременном смешивании аммонийной селитры с суперфосфатом получается мажущаяся смесь, непригодная для рассева. Поэтому смешивать эти удобрения следует непосредственно в день внесения.

Рассмотрим диаграмму, показывающую возможность смешивания удобрений (0 — свойства смеси значительно ухудшаются; 1 — длительное хранение смесей недопустимо; 2 — заблаговременное смешивание допустимо).

Диаграмма ограничений при смешивании удобрений Аммиачная селитра1 Карбамид20 Сульфат аммония311 Суперфосфат нейтрализованный4112 (простой и двойной) Преципитат51122 Фосфоритная мука611222 Металлургические шлаки7010002 Аммофос81122220 Хлористый калий91111111 1 Сернокислый калий101122222 2 2 1234567 8 9 10

Как видно из диаграммы, в большинстве случаев смешивание допустимо незадолго до внесения удобрения в почву.

Использование нескольких исходных компонентов с улучшенными физико-химическими свойствами позволяет приготовить комплексные смешанные удобрения, пригодные для длительного хранения. Например, введение нейтрализующих добавок (доломит, костная или фосфоритная мука), а также аммонизированного суперфосфата устраняет образование азотной кислоты, превращение монокальцийфосфата в дикальцийфосфат, улучшает физические свойства удобрения.

Полная нейтрализация суперфосфата или снижение содержания в нем свободной фосфорной кислоты (до 1 %) и влажности (до 4 % в простом и до 3 % в двойном) позволяет получать в смеси с карбамидом и хлоридом калия удобрение состава с соотношением 1:1:1.

Смеси стандартного гранулированного аммофоса с хлористым калием, нейтрализованными суперфосфатами и сульфатом аммония имеют хорошие физические свойства; небольшая гигроскопичность этих смесей обеспечивает возможность длительного хранения.

Механизированные приготовление и внесение тукосмесей дают большой экономический эффект по сравнению с раздельным примением односторонних удобрений.

В настоящее время значительное количество смешанных удобрений производят непосредственно на химических предприятиях. При этом, как правило, совмещают смешивание удобрений с их дополнительной химической обработкой — введением кислот (фосфорной, азотной, серной) и нейтрализующих их материалов (газообразного аммиака, жидких аммиакатов и других реагентов), а также используют растворы и плавы взамен воды в процессе гранулирования. В результате этого при смешивании компонентов гранулы получаются более однородными и прочными. Такие смешанные удобрения, по существу, не отличаются от сложносмешанных. Перечень таких удобрений включает следующие виды.

1. Гранулированное сложносмешанное удобрение, получаемое аммонизацией смеси простого суперфосфата, хлорида калия и нитрата аммония с добавлением (при необходимости) серной и фосфорной кислот.

2. Полное сложносмешанное удобрение с микроэлементами и без них, получаемое аммонизацией смеси простого суперфосфата, хлорида калия и нитрата аммония.

3. Прессованное фосфорно-калийное удобрение, получаемое на основе смеси простого суперфосфата и хлорида калия.

4. Для розничной торговли выпускают питательную смесь марки 9-9-9 с микроэлементами (на основе суперфосфата, калимагнезию сульфата аммония и соединений микроэлементов), удобрительную смесь разных марок с содержанием питательных веществ от 22 до 56 % (на основе суперфосфата, карбамида, аммонийной селитры, хлорида и сульфата калия, известняка, доломита и других компонентов) и удобрительную смесь марки 12-12-12.

Представляют собой водные растворы или суспензии, содержащие соединения азота и фосфора или азота, фосфора и калия (полные ЖКУ), иногда с добавками микроудобрений, пестицидов и стимуляторов роста растений. Помимо известных достоинств жидких удобрений по сравнению с твердыми преимуществами комплексных жидких удобрений являются простота изготовления, меньшие капитальные и эксплуатационные затраты. В ЖКУ можно в широких пределах регулировать соотношение питательных элементов. Преимуществами ЖКУ перед жидкими азотными удобрениями являются отсутствие в них свободного аммиака, а также то, что их применение исключает дополнительные трудовые затраты на внесение в почву твердых фосфорных и калийных удобрений.

Проведенные испытания показали, что действие на растения твердых и жидких комплексных удобрений приблизительно одинаковое. Несколько большая эффективность ЖКУ отмечается на карбонатных и других почвах, насыщенных основаниями.

ЖКУ относятся к одним из самых перспективных видов минеральных удобрений. Принципиальная схема получения этих удобрений заключается в нейтрализации аммиаком фосфорной кислоты до pH 6,5. Существует два вида ЖКУ, производство которых различается формой используемого фосфора: ортофос-форной и суперфосфорной кислот (последняя представляет собой смесь орто- и полифосфорной кислот с содержанием Р205 72—80 %). Содержание азота увеличивается при добавлении аммиачной селитры, мочевины или смеси мочевины и аммиачной селитры.

ЖКУ на основе термической ортофосфорной кислоты — почти прозрачные жидкости, на основе экстракционной ортофосфорной — мутные растворы (вследствие образования дисперсных частиц — аммонизированных фосфатов алюминия и железа, кремниевой кислоты). Концентрация азотно-фосфорных ЖКУ на суперфосфорной кислоте значительно выше получаемых на основе ортофосфата (табл. 92).

92. Соотношение основных элементов питания в жидких удобрениях, получаемых на основе ортофосфорной и суперфосфорной кислот N : P2Os: К20| Ортофосфорная кислота| Суперфосфорная кислота 4:1:016-4-024-6-0 3:1:018-6-024-8-0 2:1:016-8-022-11-0 1:1:013-13-019-19-0 1:2:09-18-015-30-0 1:3:08-24-012-36-0

ЖКУ производят методами горячего и холодного смешивания. При горячем смешивании (210—250 °С) с помощью нейтрализации фосфорной или полифосфорной кислоты аммиаком на крупных предприятиях получают базовые (основные) растворы орто- и полифосфатов аммония. Методом холодного смешивания (35— 45 °С) на небольших установках вблизи районов потребления изготавливают удобрения с требуемым соотношением питательных веществ, добавляя в базовые растворы карбамид, нитрат аммония, соли калия.

ЖКУ не содержат свободного NH3, поэтому их можно разбрызгивать по поверхности поля с последующей заделкой различными почвообрабатывающими орудиями. Специальными машинами ЖКУ вносят местно, ленточно, под любые культуры, особенно пропашные. Эти удобрения можно применять на орошаемых землях (с поливной водой).

Использование ЖКУ позволяет механизировать все процессы погрузки и разгрузки удобрений, устранить потери при транспортировке, перегрузках, хранении и в процессе внесения в почву.

Можно перечислить еще ряд преимуществ жидких комплексных удобрений: легкость автоматизированного контроля распределения удобрений по полю, обеспечивающего высокую равномерность их заделки в почву, возможность растворения в ЖКУ и совместного внесения гербицидов, инсектицидов, микроэлементов. Кроме того, получение этих удобрений связано со значительно меньшими капитальными вложениями, что объясняется сокращением некоторых стадий технологического процесса производства (сушка, грануляция).

Капитальные затраты на строительство цехов по производству ЖКУ на 20—30 % ниже, чем твердых удобрений. Даже при равной себестоимости ЖКУ затраты труда на их применение в 3—3,5 раза ниже по сравнению с твердыми удобрениями.

При этом особенно большая экономия достигается на погрузочно-разгрузочных работах и транспортировке. Доставка и внесение ЖКУ в 2—2,5 раза дешевле, чем твердых удобрений.

Внедрение ЖКУ требует, однако, создания специальных высокопроизводительных машин. Необходимо учитывать, что эти удобрения (особенно суспендированные) обладают коррозийной активностью.

В последние годы для повышения концентрации питательных элементов в ЖКУ в более широких масштабах стали использовать стабилизирующие добавки к ним. Такие удобрения называются суспендированные или суспензионные.

В качестве стабилизирующих добавок используют аттапульги-товые или бентонитовые глины (1,0—1,5 %). Это замедляет кристаллизацию перенасыщенных растворов, благодаря чему суспендированные жидкие комплексные удобрения (СЖКУ) долгое время сохраняются в виде тонкой суспензии, использование которой не вызывает затруднений. Сумма питательных веществ в таком удобрении может доходить до 45 %.

Контрольные вопросы и задания

1. Какие удобрения называют комплексными? На какие группы их подразделяют в зависимости от способов получения? В чем преимущества и недостатки комплексных удобрений? 2. Перечислите наиболее распространенные трех- и двухкомпонентные комплексные удобрения. 3. Расскажите об основных свойствах и способах получения сложных удобрений. 4. Какие удобрения относятся к сложносмешанным? 5. Каковы способы их получения, свойства и особенности применения? 6. Какие требования предъявляют к смешиванию простых удобрений? Расскажите об их применении. 7. Какие преимущества имеют сухие смеси удобрений? 8. Как можно улучшить физические свойства смешанных удобрений? 9. С какой целью в состав комплексных удобрений вводят микроэлементы? 10. Какова экономическая эффективность комплексных удобрений? 11. Что такое жидкие комплексные и суспендированные удобрения? Расскажите об их свойствах и способах получения.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК