Глава II ТАК ЧТО ЖЕ ТАКОЕ ДНК И ЧТО ОНА УМЕЕТ?

We use cookies. Read the Privacy and Cookie Policy

Глава II

ТАК ЧТО ЖЕ ТАКОЕ ДНК И ЧТО ОНА УМЕЕТ?

Всем нам прекрасно известно, так было испокон веков, дети часто бывают похожи на своих родителей, что ребенок рождается спустя девять месяцев после оплодотворения яйцеклетки. Механизм наследования оставался тайной до самого недавнего времени, во все времена люди пытались найти ему объяснение, выдвигая всевозможные теории. В греческой литературе можно найти множество упоминаний о фамильном сходстве, а рассуждать о его причинах было излюбленным занятием античных философов. Аристотель примерно в 335 году до нашей эры высказывал догадку, что облик и все свойства будущего ребенка определяет отец, в то время как роль матери сводится к вынашиванию дитяти в утробе и заботе о нем после рождения. Эта гипотеза прекрасно отвечала патриархальной направленности западной цивилизации той эпохи. Казалось совершенно естественным, что отец, обеспечивающий в семье достаток и положение, является и «автором» всех черт и свойств своих детей. Не отрицалось, однако, и то, что подобрать подходящую супругу важно, даже необходимо. В конце концов семена, брошенные в добрую почву, всегда прорастают лучше, чем в бедной и тощей земле. Была, впрочем, одна проблема — она долгое время заставляла безвинно страдать несчастных женщин.

Если дети рождаются по образу и подобию своих отцов, откуда же берутся дочери? Аристотель ломал над этим голову всю свою жизнь и пришел к логическому заключению, что младенцы повторяют отцов во всем, включая и половую принадлежность, за исключением тех случаев, когда развитию что-то мешает во время вынашивания в утробе. Эти «помехи» могут быть совсем ничтожными, приводя к незначительным изменениям (например, волосы у ребенка рыжие, а не черные, как у отца), а более основательные помехи приводят к заметным отклонениям, вплоть до того, что ребенок может родиться с дефектами или оказаться девочкой. Такой подход имел тяжелые последствия для многих женщин, которых наказывали или подвергали преследованию за то, что им не удавалось родить сына. Эта древняя теория развилась в представление о «гомункулусе», крошечном, но уже заранее полностью сформированном существе, попадающем в организм женщины в момент полового сношения, а потом ему остается только увеличиваться в размерах. Еще в начале восемнадцатого века пионер микроскопии Антони ван Левенгук был убежден, что с помощью хорошо отполированных луп можно разглядеть крохотного гомункулуса, свернувшегося в клубочек в головке сперматозоида.

Гиппократ, чье имя увековечено в названии клятвы врачей (в прошлом эту клятву в верности медицинскому долгу давали начинающие врачи, кое-где этот обычай сохранился и поныне), придерживался менее крайних взглядов, чем Аристотель, отводивший женщинам столь незаметную роль. Он полагал, что семенную жидкость производят не только мужчины, но и женщины, а черты младенца определяются тем, чьей жидкости из родителей в момент зачатия оказалось больше. В результате дитя может получить отцовские глаза или материнский нос; если же жидкость в момент зачатия присутствует в равных количествах, то и ребенок будет похож на обоих родителей, например, цвет его волос может оказаться средним между материнским и отцовским.

Теория Гиппократа более естественным образом объясняла то, с чем не раз встречался в жизни каждый человек. «Он весь в отца» или «У нее мамина улыбка» — подобные замечания ежедневно звучат миллионы раз по всему миру. К концу девятнадцатого века большинство ученых признавали, что свойства потомства тем или иным образом определяются родителями. И Дарвину было известно не больше, именно поэтому ему никак не удавалось найти механизм, объясняющий теорию естественного отбора: по этой логике получалось, если появляется что-то новое и благоприятное, оно не может удержаться, а неизбежно будет разбавляться и сводиться на нет из-за добавления все новых признаков в каждом последующем поколении. Современные генетики снисходительно посмеиваются над тем, как долго их предшественники были слепы, однако нельзя отрицать, что теория смешения была, даже сейчас она вполне правдоподобно описывает и объясняет наследственность.

В конечном итоге два практических достижения девятнадцатого столетия послужили ключом к пониманию того, как все происходит на самом деле: одним достижением явилось изобретение новых химических красителей для текстильной промышленности, а другим — совершенствование технологии шлифовки линз для микроскопов, которое позволило намного улучшить качество увеличения. Теперь под микроскопом можно было различить отдельные клетки, а с использованием новых красителей даже увидеть их внутреннюю структуру. Отныне появилась возможность наблюдать процесс оплодотворения, слияния крупной яйцеклетки и маленького целеустремленного сперматозоида. Можно было видеть, как в делящихся клетках формируются странные, похожие на ниточки структуры, как они собираются в центре, как затем равные их количества расходятся в две новые клетки. Эти необычные структуры — они хорошо и четко прокрашивались новыми красителями — получили название хромосомы, что на греческом языке означает буквально «окрашенные тельца». Понять роль хромосом удалось лишь спустя много лет.

В процессе оплодотворения один набор таинственных нитей как будто возникал из отцовского сперматозоида, а второй — из материнской яйцеклетки. Еще раньше это было предсказано человеком, известным всему миру как родоначальник генетики. Основы этой науки Грегор Мендель, монах из чешского города Брно, заложил на опытной грядке в монастырском огороде, где он выращивал горох в 1860-е годы. Он пришел к выводу, что наследственность (у любых видов) передается в равной мере от обоих родителей к потомству. К несчастью, Мендель умер, не увидев хромосом своими глазами, но предвидение его оказалось верным (за двумя важными исключениями — митохондриальная ДНК, о которой мы еще будем говорить в этой книге, и хромосомы, определяющие пол). Гены — специфические частицы генетического кода, находящиеся в хромосомах, наследуются в равных количествах от обоих родительских хромосомных наборов. К 1903 году определяющая роль хромосом в наследственности и тот факт, что в них должно содержаться какое-то вещество наследственности, были уже общепризнанными, но потребовалось еще полвека, чтобы узнать, из чего состоят хромосомы и как они действуют в качестве физических носителей наследственной информации. В 1953 году двое молодых ученых из Кембриджа — Джеймс Д. Уотсон и Фрэнсис Крик — расшифровали молекулярную структуру вещества, о котором давно уже знали, но считали его неинтересным и неважным. Словно для того, чтобы подчеркнуть его незаметность, веществу дали длинное название — дезоксирибонуклеиновая кислота, правда, позже появилась симпатичная аббревиатура — ДНК. Хотя было проведено несколько экспериментов по выяснению предполагаемой роли ДНК в механизме наследственности, на белки делались основные ставки, как на наиболее вероятные вещества, несущие наследственную информацию. Белки имеют сложное строение, состоят из двадцати различных компонентов (аминокислот), способны принимать миллионы различных форм. Разумеется, полагали исследователи, только таким, действительно сложным структурам под силу справиться со столь грандиозной задачей, как программирование, благодаря которому из оплодотворенной клетки вырастает и развивается полностью сформированный и функционирующий организм. Не представлялось возможным, чтобы ДНК, состоявшая всего из четырех компонентов, могла справиться с такой сложной задачей. Правда, ДНК находилась как раз в подходящем месте, в клеточном ядре, но ведь она могла заниматься там и какимнибудь простеньким делом, скажем, впитывать излишки воды, наподобие губки.

Несмотря на отсутствие интереса к этому веществу у ученых, современников Уотсона и Крика, им казалось, что именно в нем кроется ключ к разгадке химического механизма наследственности. Они решили попытаться расшифровать молекулярную структуру ДНК, применив метод, уже испытанный при изучении структуры белка. Этот метод заключался в получении длинных волокон очищенной ДНК и их обработке рентгеновскими лучами. Рентгеновские лучи проникали в ДНК, и большая их часть проходила насквозь и выходила с другой стороны. Но некоторое количество лучей сталкивалось с атомами, входящими в структуру молекулы. Лучи отражались от атомов и рикошетом возвращались к той же стороне, откуда направились. В этом месте их фиксировали с помощью фотопленки — точно такой же, какой до сих пор пользуются рентгенологи для снимков перелома костей. Отраженные рентгеновские лучи «рисовали» на пленке узор из множества точек, по которым затем можно было определить расположение атомов в молекуле ДНК.

Уотсон и Крик провели долгие недели за изготовлением различных моделей из штативов, картонных пластинок и металлических шариков, изображающих атомы. Наконец одна из моделей полностью совпала с узором рентгеновских лучей. Модель была простой, но в то же время невероятно изящной. Ее структура сразу же навела ученых на мысль о том, как может осуществляться ее генетическая функция. Молодые ученые с подкупающей уверенностью сообщали о сделанном открытии в статье, опубликованной в научном журнале «Nature»: «От нашего внимания не ускользнуло, что специфическое удвоение, которое мы постулируем, может служить копирующим механизмом генетического материала». Они оказались совершенно правы, и в 1962 году Уотсон и Крик были награждены Нобелевской премией по медицине и физиологии.

Требования, предъявляемые к генетическому материалу: возможность многократного и точного его воспроизведения, чтобы при делении клетка давала двум новым «дочерним» клеткам равные порции хромосом в ядрах. Если генетический материал в хромосомах не будет копироваться всякий раз при делении клетки, то он довольно скоро иссякнет. Копирование же должно быть очень точным, иначе вновь образованные клетки просто не будут жизнеспособными. Уотсон и Крик обнаружили, что каждая молекула ДНК состоит из двух длинных спиралей, напоминающих две переплетенные винтовые лестницы — эта структура получила название «двойная спираль». Когда подходит время копирования, две винтовые лестницы двойной спирали разъединяются. ДНК построена всего из четырех базовых компонентов, которые обычно обозначаются первыми буквами их химических названий: А — аденин, Ц — цитозин, Г — гуанин и Т — тимин. Их общее название — азотистые основания (в дальнейшем для простоты мы будем именовать их просто основаниями). Теперь забудьте про химические названия и запомните только четыре буквы А, Ц, Г и Т.

Прорыв в расшифровке структуры ДНК был сделан, когда Уотсон с Криком обнаружили: четыре кирпичика, из которых строится ДНК, могут соединяться не каждый с каждым, а только попарно: А в одной спирали подходит только к Т, находящемуся прямо напротив него в соседней спирали. Словно ключ к замку или один кусочек головоломки — паззла к другому, А идеально подходит к Т, но никогда к Г, Ц или другому А Точно так же Ц и Г на двух спиралях соединяются только друг с другом, но не с А и не с Т. Таким способом обе нити сохраняют комплементарно (то есть дополнительно друг к другу) закодированную информацию о последовательности. Например, последовательности АТТЦАГ на одной нити может соответствовать только последовательность ТААГТЦ на соседней. Когда двойная спираль разъединяет нити, особые клеточные структуры достраивают напротив АТТГАЦ старой нити новую последовательность ТААГТЦ, и в то же время новое АТТГАЦ строится напротив ТААГТЦ второй старой нити. В результате появляются две новые двойные спирали, идентичные исходной. Последовательность четырех химических букв остается в неизменности на протяжении всего процесса дублирования. Что же означает эта последовательность? Это информация в чистом виде. Сама по себе ДНК не имеет никакой другой функции в организме. Она не помогает дышать или переваривать пищу. Она только дает организму указания, как ему это делать. В клетке имеются и «менеджеры среднего звена», вещества, которые получают инструкции и, руководствуясь ими, выполняют работу,— это белки. Вам может показаться, что все слишком усложнено. Что ж, это и впрямь очень сложно, но белки на самом деле действуют по указаниям, получаемым напрямую из штаба, то есть непосредственно от ДНК.

Действительно, от того, насколько сложны клетки, ткани и организм в целом, просто дух захватывает, но при этом способ, которым записаны инструкции исходной ДНК, на удивление прост. Как и в большинстве известных нам знаковых информационных систем, таких, как язык, числа или бинарный код компьютера, важно не количество различных знаков, или букв, а та последовательность, в которой они расположены. В анаграммах, например «машинка» и «манишка», содержатся одни и те же буквы, только порядок их расположения немного различается, а в результате перед нами совершенно разные слова. Подобным образом 476 021 и 104 762 — совсем разные числа, которые обозначены одними и теми же цифрами, стоящими по-разному. Еще один пример: 001 010 и 100 100 имеют весьма разные значения в бинарном коде. Точно так обстоит дело и с порядком, в котором располагаются в ДНК четыре химические буквы. АЦГГТА и ГАЦАГТ — анаграммы ДНК, которые имеют совершенно разный смысл для клетки, так же, как «машинка» и «манишка» имеют разный смысл для нас.

Итак, как же записывается сообщение и как его читать? ДНК прикована к хромосомам, которые в свою очередь никогда не покидают пределов клеточного ядра. Всю работу выполняют белки. В организме они — исполнители. Это ферменты, которые переваривают пищу и обеспечивают обмен веществ, и гормоны, которые координируют процессы, происходящие в разных частях организма. Это коллагены кожи и костей, гемоглобины крови. Это антитела, которые сражаются с инфекцией. Другими словами, они делают все. Некоторые белки — это молекулы невероятных размеров, другие совсем невелики, но все белки имеют общее свойство, а именно то, что представляют они собой цепочку звеньев, которые называются аминокислотами. Порядок расположения аминокислот и определяет функции белка. Аминокислоты одной части молекулы притягивают к себе аминокислоты другой части, так симпатичная и простая линейная цепочка сворачивается и скручивается в комок. Но комок этот имеет строго определенную форму, которая позволяет белку выполнять свое предназначение: быть катализатором биологических реакций, если это фермент; строить мышечную ткань, если это мышечный белок; отлавливать проникшие в организм бактерии, если это антитело, и так далее. Всего имеется двадцать аминокислот, названия некоторых прекрасно известны — например, лизин или фенилаланин (он входит в состав искусственного подсластителя), о других большинство людей, если они не специалисты, возможно, никогда не слышали — например, цистеин или тирозин. Порядок, в котором расположены аминокислоты, точно определяет его окончательную форму и функцию, стало быть, для того чтобы построить белок, требуется лишь получить от ДНК инструкцию, определяющую этот порядок. Закодированная информация, содержащаяся внутри клеточного ядра в ДНК, должна каким-то образом быть передана в другую часть клетки, где происходит синтез белков.

Вырвите у себя один волосок, если не жалко. Полупрозрачный пузырек на одном его конце — это волосяная луковица, или фолликул. Один такой фолликул состоит примерно из миллиона клеток, единственное жизненное предназначение которых — строить волос, состоящий преимущественно из белка кератина. Когда вы выдернули волосок, клетки еще продолжали работать. Представьте себе, что находитесь внутри одной такой клетки. Все вокруг заняты производством кератина. Но как узнать, что нужно делать? Главное в создании молекул любого белка, в том числе и кератина,— это воспроизводить правильную последовательность аминокислот в них. Что такое правильная последовательность? Подойдем к ДНК, расположенной внутри клеточного ядра в хромосомах. Клетка волосяного фолликула, как и каждая клетка организма, располагает ДНК с полным набором инструкций, но нас интересует только кератин. Волосяным клеткам неинтересно, как воспроизводить кровь или кости, поэтому эти участки ДНК здесь отключены.

Но участок, содержащий инструкции насчет кератина, кератиновый ген, открыт для консультаций. Ген представляет собой не что иное, как последовательность символов или «букв» ДНК, определяющую порядок расположения аминокислот в кератине.

Последовательность ДНК в кератиновом гене начинается так: АТГАЦЦТЦЦТТЦ... и так далее. Поскольку мы не привыкли читать этот шифр, нам он кажется случайным набором четырех символов ДНК. Однако, хотя нам он представляется бессмыслицей, для волосяных клеток это совсем не так. Для них это небольшой фрагмент кода кератина, и прочитать его очень просто. Сначала клетка считывает код группами, по три символа в каждой. Так АТГАЦЦТЦЦТТЦ превращается в АТГ-АЦЦ-ТЦЦ-ТТЦ. Каждая трехсимвольная группа называется триплетом, соответствует одной какой-либо аминокислоте. Первый триплет АТГ представляет собой код аминокислоты метионина, АЦЦ означает треонин, ТЦЦ — серин, ТТЦ — фенилаланин и так далее. Это генетический код, которым пользуются все гены, содержащиеся в клеточных ядрах всех видов растений и животных.

Клетка изготавливает временную копию этого кода, как бы ксерокопируя несколько страниц из книги, затем переправляет эту копию в другой участок клетки, в «цех» по изготовлению кератина. Когда копия прибывает сюда, станок, производящий кератин, приходит в действие. Сначала он считывает первый триплет и расшифровывает его значение — аминокислота метионин. Затем он достает с полки молекулу метионина. Считывает второй триплет (треонин) и достает молекулу этой аминокислоты и присоединяет ее к метионину. Третий триплет означает серин, и молекула серина крепится к треонину. Четвертый триплет соответствует фенилаланину, и его прикрепляют к серину. Теперь мы имеем четыре аминокислоты, соединенных в соответствии с последовательностью кератинового гена ДНК в правильном порядке: метионин-треонин-серин-фенилаланин. Следующий триплет считывается, пятая аминокислота встает на место за фенилаланином и так далее. Этот процесс считывания, расшифровки и сборки аминокислот в правильном порядке продолжается, пока вся инструкция не будет прочитана до конца. И вот, наконец, перед нами готовенькая новая молекула кератина. Она отсоединяется и устремляется к миллионам других таких же молекул, чтобы вместе с ними сформировать часть одного из волосков, растущих у вас на голове. Разумеется, только в том случае, если вы его не вырвали.