Сверхпроводимость и сверхпроводники

Сверхпроводимость — способность вещества без сопротивления пропускать через себя большое количество электрического тока — связана с тем, что электроны проходят через кристаллическую решетку парами. Казалось бы, это парадокс, ведь два электрона, скорее, наткнутся на атомы решетки, затормозят, расшатают само препятствие, вследствие чего проводник разогреется и его сопротивление возрастет. Но дело обстоит иначе, когда речь идет об очень низкой температуре окружающей среды…

В 1908 г. голландскому физику Хейке Камерлинг-Оннесу (1853–1926) удалось сжижить гелий — для этого понадобилось сначала охладить газ в кипящем жидком водороде до ?230 °C, а затем пропустить через узкую трубку под высоким давлением. Далее начались эксперименты, целью которых было выяснить: насколько сопротивление металлов зависит от температуры? Поочередно помещая проводки из золота и платины в криостат с жидким кислородом, водородом, азотом, гелием и пропуская через них ток, ученый понял: чем холоднее окружающая среда, тем ниже сопротивление проводника. Затем он заменил металлические проволоки ртутью, и в гелии ее сопротивление почему-то исчезло вовсе. Хейке подумал было, что в криостате случилось короткое замыкание — то есть две точки цепи с разницей в напряжении случайно соединились, вызвав резкое падение сопротивления и скачок силы тока. Ученый проделывал эксперимент еще и еще, даже взял другую емкость для ртути — не в форме U, а в форме W. Все зря! Замеры показывали полное отсутствие сопротивления.

Причину данного явления Хейке узнал не сразу — и то лишь благодаря халатности своего помощника-студента. В обязанности молодого человека входило следить за тем, чтобы давление в криостате с гелием всегда было ниже атмосферного. (Камерлинг-Оннес создал такие условия потому, что добыча и очистка гелия была очень затратным удовольствием, а малейшее повреждение сосуда, куда его закачивали, при обычном давлении привело бы к испарению газа.) Но во время одного из экспериментов уставший студент уснул, и вскоре гальванометр показал, что сопротивление ртути растет. Коллега Хейке, проводивший измерения, поспешил проверить состояние криостата и обнаружил, что по недосмотру помощника давление и, соответственно, температура в камере повысились. Тогда-то ученым и открылась истина: сверхпроводимость ртути связана с низкой температурой гелия. Температура кипения жидкого гелия составляет ?268,95 °C, что всего на 4° выше абсолютного нуля, а ртуть из проводника превращается в сверхпроводник при ?269 °C — именно при такой температуре ее кристаллическая решетка перестает создавать помехи свободному движению электронов.

Объяснить происходящее Хейке не смог, и лишь двадцать лет спустя изучение явления сверхвысокой проводимости перешло на новый этап. В 1933 г. немецкие физики В. Мейсснер и Р. Оксенфельд опытным путем установили, что сверхпроводники, в отличие от проводников, словно выталкивают из себя магнитное поле. Данный эффект, названный в честь самого Мейсснера, возникал, например, тогда, когда магнит помещался над оловянной или свинцовой чашей, охлажденной до отметки ниже переходной от проводника к сверхпроводнику. Поле магнита направлялось на чашу, и в ней возникали мгновенные индуктивные токи, создающие новое магнитное поле, направленное против первоначального. Потому магнит не падал в чашу, а парил над ней «в невесомости». (Неофициальное название этого явления — «гроб Магомета» — возникло благодаря легенде о том, что гроб великого пророка левитировал.)

Причина же сверхпроводимости была открыта лишь в 1957 г., с появлением теории БКШ, названной по первым буквам фамилий американских физиков Джона Бардина (1908–1991), Леона Купера (р. 1930) и Джона Роберта Шриффера (р. 1931). Согласно этой теории, в экстремальном холоде атомы металлов, будучи очень тяжелыми, прекращают колебаться, и кристаллическая решетка застывает в одном положении. Свободные электроны внешней атомной оболочки отправляются в путешествие между «прутьями» решетки, наделяя металл способностью проводить ток, а сами атомы, лишившись отрицательных зарядов, ионизируются — то есть заряжаются положительно. Как только сверхпроводник подключается к батарее и в нем возникает напряжение, электроны направляются в одну сторону, периодически натыкаясь на атомы-ионы. Те, хоть и не начинают колебаться, все-таки на миг немного сближаются и создают положительное энергетическое поле, которое притягивает еще одну отрицательную частицу. В итоге второй электрон проскальзывает вперед «зайцем», словно прицепившись к первой частице, и так происходит снова и снова. При этом на создание пар электроны тратят массу энергии, и у них попросту не остается сил на то, чтобы хоть как-то взаимодействовать с атомами. Ослабленные электроны сбавляют темп, в то время как атомы уже не реагируют на них и не «ставят подножки». Сопротивление падает до нуля — электроны двигаются дальше без остановок и потерь энергии.

Позже были открыты сплавы металлов, которые становятся сверхпроводниками уже при температурах ?253 °C, ?243 °C и даже ?113 °C, а это более чем вдвое выше абсолютного нуля (?273 °C). Как металлам удается проводить ток без сопротивления при такой высокой температуре, наука объяснить не может, ведь теория БКШ в этих случаях не работает. Поскольку такие сверхпроводники слишком ломкие и дорогие, применения им еще не нашлось, а вот низкотемпературные сверхпроводники ныне активно используются в электротехнике, особенно той, что связана с сильными магнитными полями. Например, в составе магнитно-резонансного томографа (МРТ) сверхпроводящие электромагниты помогают диагностировать разные заболевания, поскольку их поле «подстраивает под себя» направление атомов водорода в теле человека и с помощью этих атомов ловит сигналы от всех органов, выявляя поврежденные ткани.

Сверхпроводники готовы транспортировать электричество без энергетических потерь ровно столько времени, сколько поддерживается вокруг них экстремальный холод. Это позволяет им создавать устойчивое магнитное поле и делает прекрасной основой для электромагнитов — не только более мощных по сравнению с железными, но и более экономичных. Скажем, чтобы поддерживать в небольшом 10-сантиметровом соленоиде мощность 10 Тл, необходимо затратить более 5000 кВт электроэнергии и ежеминутно охлаждать магнит тремя кубами воды. Сверхпроводящему магниту достаточно просто находиться в гелиевом «холодильнике», и он будет бесперебойно генерировать поле мощностью 20 Тл!

Если обычные провода теряют по пути 30 % энергии, просто нагревая воздух, то сверхпроводящие за счет отсутствия сопротивления не теряют энергии вовсе, а значит, повышают выработку электричества на треть. Более того, материалы с высоким уровнем проводимости позволяют строить генераторы и двигатели с очень значительным коэффициентом полезного действия. Поэтому сверхпроводники становятся очень востребованными в энергетике.

В начале 2000-х в датском Копенгагене в обычную трехфазную сеть внедрили 30-метровый сверхпроводник, и то же самое сделали в американском Детройте, только длина кабеля была вчетверо больше. Так, постепенно сверхпроводники занимают заслуженное почетное место в мире технологий.