Законы наследственности

Вступление в XX век ознаменовалось бурным развитием экспериментальной генетики, принесшей множество новых данных о наследственности и изменчивости. Отправной точкой в этом процессе стало открытие законов Менделя.

Грегор Мендель (1822–1884) — австрийский ученый?ботаник и послушник Августинского монастыря в городе Брюнн — не только служил Богу, но также работал в госпитале, преподавал математику, изучал физику и цитологию, занимался виноделием, земледелием и садоводством. Во время обучения в Венском университете он увлекся гибридизацией растений и по возвращении в Брюнн принялся экспериментировать в монастырском саду со скрещиванием разных сортов гороха.

Надо заметить, тогда считалось, что при скрещивании родительские признаки либо вовсе не расщепляются («слитная наследственность»), либо наследуются мозаично: одни — от матери, другие — от отца («смешанная наследственность»). В основе этой концепции лежало убеждение, будто в потомстве наследственность родителей смешивается, сливается, растворяется. Однако такие представления не позволяли аргументировать теорию естественного отбора. Ведь если бы при скрещивании наследственные приспособительные признаки в потомстве не сохранялись, а «растворялись», то и отбирать было бы нечего. Дабы избавить свою теорию естественного отбора от неувязок, Ч. Дарвин выдвинул теорию пангенезиса, согласно которой признаки родителей передаются потомству посредством мельчайших частиц геммул, поступающих в половые клетки из всех других клеток организма. Однако и это не могло быть правильным решением вопроса.

Только Менделю в ходе кропотливой работы удалось приоткрыть дверь в тайны генетики.

К проведению своих опытов Грегор готовился два года. Из 34 сортов гороха он выбрал 22, которые четко отличались по каким?либо признакам. Особенно тщательно проверялась чистота сорта: потомки всех поколений должны были иметь сходство между собой и своими родителями.

Растение для эксперимента ученый выбрал не случайно. Сорта гороха различаются целым рядом хорошо заметных признаков (окраска цветков, окраска и форма семян, расположение цветков, длина стебля). Но главный фактор — способность к самоопылению, ведь это позволяет исследователю опылять одно растение пыльцой другого растения.

В 1856 г. ученый приступил к работе. В отличие от предшественников, он не пытался оценить поколения в целом, а изучал наследование отдельных признаков всеми потомками конкретной пары. Это сужало круг вопросов и давало возможность получить наиболее четкие результаты.

Прежде чем опылить цветок гороха одного сорта другим, Мендель еще до созревания пыльцы обрывал с него тычинки. Позднее, когда рыльце было готово к опылению, ученый наносил на него пыльцу, взятую с цветков нужного сорта, а чтобы растения опылялись только отобранным материалом, выращивал их в специальном домике, недоступном для насекомых, или же надевал на цветки мешочки.

Сначала Грегор скрестил между собой растения с желтыми и зелеными семенами. В результате все гибриды первого поколения оказались желтыми и единообразными, независимо от того, из какого именно семени (желтого или зеленого) выросли материнские/отцовские экземпляры. Значит, оба родителя в равной степени способны передавать свои признаки потомству, сделал вывод Мендель. И сформулировал закон единообразия гибридов первого поколения (первый закон): при скрещивании чистых линий, обладающих взаимоисключающими признаками, все гибриды первого поколения будут иметь признак одного из родителей.

Единицу наследственности ученый назвал фактором (спустя десятилетия этот термин получил название «ген»). Признак, проявляющийся у гибридов первого поколения, обозначил доминантным, а тот, что подавляется, — рецессивным. Как оказалось, сочетание этих признаков дает предсказуемые схемы наследственности.

Далее ученый установил, что во втором поколении у 75 % особей проявляется доминантный признак, а у 25 % — рецессивный (расщепление 3:1). Эта закономерность получила название второго закона Менделя, или закона расщепления.

Третий же закон — независимого наследования признаков — был сформулирован в результате скрещивания растений, которые отличались уже и по цвету, и по текстуре семян. Первая чистая линия гороха имела желтые и гладкие семена, а вторая — зеленые и сморщенные. В итоге гибриды первого поколения получились желтыми и гладкими, а во втором, как и полагается, произошло расщепление: помимо желтых гладких и зеленых морщинистых семян образовались желтые сморщенные и зеленые гладкие варианты — произошла перекомбинация признаков. Следовательно, при дигибридном скрещивании расщепление по каждой паре признаков происходит независимо от других свойств. Это и есть третий закон Менделя.

В самом конце эксперимента ученый предположил, что открытые им законы распространяются на все живое, ибо «единство плана развития органической жизни стоит вне сомнения».

За восемь лет Мендель вырастил и скрестил гибриды 30 000 растений, обследовал 20 000 их потомков, проделал 10 000 опытов и рассмотрел в лупу более 7000 горошин. В ходе экспериментов он разработал метод дискретного анализа наследования признаков и заложил научные основы генетики, открыв следующие явления:

1. Каждый наследственный признак определяется отдельным наследственным фактором, задатком, геном.

2. Гены сохраняются в чистом виде в ряде поколений, не утрачивая своей индивидуальности, а значит, ген относительно постоянен.

3. Оба пола в равной мере участвуют в передаче своих наследственных свойств потомству.

4. Гены способны удваиваться. Это наблюдение стало предпосылкой к открытию мейоза — процесса, в результате которого из одной материнской клетки с двойной ДНК образуются четыре одноцепочечные дочерние клетки.

5. Наследственные задатки являются парными: один — материнский, другой — отцовский; один из них может быть доминантным, другой — рецессивным. Это положение соответствует принципу аллелизма: ген представлен минимум двумя аллелями (формами).

Мендель рассказал о своем открытии 8 марта 1865 г., выступив перед Брюннским обществом естествоиспытателей. Первый в истории доклад о генетике был воспринят более чем прохладно — Грегору не задали ни одного вопроса. Через год его статья «Опыты над растительными гибридами» была напечатана и разослана в 120 университетских библиотек. Кроме того, ученый дополнительно заказал 40 оттисков своей работы и отправил известным ботаникам. Откликов не последовало… Такое непонимание ученый прокомментировал смиренно, как и подобает слуге Божьему: «Мое время еще придет».

В течение шести лет он читал лекции о своих исследованиях, но ни один из слушателей не понял смысла его теории. Никто не подозревал, что имеет дело с работой, которая на заре ХХ в. станет основой целой научной отрасли — генетики.

В начале 1880?х немец Вальтер Флемминг с помощью хроматины (окрашивающего состава) обнаружил внутри клеточного ядра нитеобразные хромосомы и пронаблюдал деление клетки (митоз), в процессе которого каждая хромосома производит свою копию. Продолжив эти исследования, бельгиец Эдуард ван Бенеден доказал постоянство набора хромосом у каждого вида животных и растений: 46 (23 пары) у человека, 20 (10 пар) — у кукурузы, 12 (6 пар) — у мухи, 8 (4 пары) — у дрозофилы. Каждая пара хромосом состоит из материнской и отцовской «нити», и при формировании половых клеток — яйцеклетки и сперматозоида — хромосомы разделяются, не удваиваясь (иначе каждый индивид имел бы двойной набор хромосом).

Узнав об этом открытии, американец Уолтер Саттон (1876–1916) заметил, что хромосомы выглядят как наследственные факторы Менделя. У каждой клетки есть фиксированное число пар хромосом, и каждая хромосома способна передавать наследственные признаки от одной клетки другой. Новый организм образуется от слияния яйцевой материнской клетки и сперматозоида с отцовским набором хромосом. Эти сочетания дают возможность каждому поколению усилить некоторые рецессивные черты и ослабить доминантные. Разные комбинации приводят к изменениям свойств, используемых затем в процессе естественного отбора.

Против хромосомной теории выступил У. Бэтсон, считавший, что эволюция состоит не в изменениях генов под влиянием внешней среды, а лишь в выпадении генов, в накоплении генетических утрат. Однако в 1900 г. законы Менделя были доказаны независимо сразу тремя учеными: Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. За последующие 30 лет учение о наследственности обогатилось колоссальным экспериментальным и теоретическим материалом.

В ХХ в. законы Менделя стали основой для развития биоинформатики и эволюционной генетики, были сделаны многие новые открытия. А генетика стала самой динамичной отраслью естественных наук. Именно поэтому ХХI столетие называют веком Менделя, что и является наивысшим признанием гения ученого.