Менделизм-морганизм (Хромосомная теория наследственности)

We use cookies. Read the Privacy and Cookie Policy

Для изложения сущности менделевско-моргановской генетики воспользуемся основными положениями статьи Моргана «Наследственность», опубликованной в США в 1945 г. в Американской энциклопедии (Encyclopedia Americana, 1945 г.). «Начиная с1883 г. Август Вейсман в ряде статей, которые были частично умозрительными, однако подкреплялись постоянной ссылкой на наблюдения и опыты, подверг критике господствующую идею о том, что признаки, приобретённые индивидуумом, передаются зародышевым клеткам и могут появиться в потомстве. Во многих случаях было показано, что зародышевые клетки уже на ранних стадиях развития эмбриона отделяются от остальных клеток и остаются в недифференцированном состоянии, в то время как другие клетки, из которых образуется тело индивидуума, дифференцируются. Зародышевые клетки становятся впоследствии основной частью яичника и семенника. Поэтому по своему происхождению они независимы от остальных частей тела и никогда не были его составной частью. Тело защищает и кормит их, но в каком-либо другом отношении на них не влияет (то есть не изменяет. — Т. Л.). Зародышевый путь является неиссякаемым потоком, который в каждом поколении отделяет клетки тела, назначение которых сохранять зародышевые клетки. Все новые изменения сначала возникают в зародышевых клетках и впервые проявляются как признаки у особей, развивающихся из этих зародышевых клеток. Эволюция имеет зародышевую, а не соматическую (то есть телесную. — Т. Л.) природу, как думали раньше. Это представление о происхождении новых признаков в настоящее время принимается почти всеми биологами.

Поэтому наследственность обусловливается сохранением в зародышевой плазме тех элементов, как старых, так и новых, которые возникали в ней от времени до времени. Зародышевая плазма представляет собой капитал расы, причём на образование новых особей в каждом поколении расходуются лишь проценты.

… Мендель открыл подлинный механизм наследственности… Было найдено, что законы Менделя применимы не только к признакам культурных растений и домашних животных, не только к таким внешним признакам, как окраска, но также и к признакам диких животных, к видовым различиям, и к самым основным свойствам живых существ. Менделевский закон расщепления устанавливает, что элементы, которые приносятся двумя родителями потомству, составляют пары и что при образовании зародышевых клеток потомства члены каждой пары отделяются друг от друга таким образом, что каждая зародышевая клетка содержит только по одному члену каждой пары. Например, Мендель скрещивал сорт столового гороха, имеющего зелёные семена, с сортом, имеющим жёлтые семена. Все семена потомства были жёлтыми. Жёлтый доминирует над зелёным. Если растения от этих гибридных семян самоопыляются (или скрещиваются между собой), они дают как жёлтые, так и зелёные семена в отношении три жёлтых к одному зелёному. Зелёные семена являются чистыми и всегда дают только зелёные семена. Однако было найдено, что жёлтые семена бывают двух родов; часть из них является чистой в отношении жёлтой окраски, всегда дающей только жёлтых потомков, другая часть является гибридной, дающей как жёлтые, так и золёные семена в отношении три к одному. Семена второго поколения появляются в отношении один чистый жёлтый, два гибридных жёлтых, один чистый зелёный. Мендель отметил, что если исходный зелёный предок привнёс элемент зелёной окраски, а жёлтый предок — элемент жёлтой окраски, то эти контрастирующие элементы образуют у гибридов пару, члены которой отделяются один от другого (расщепляются) при образовании зародышевых клеток (гамет). В результате половина яйцеклеток будет содержать элемент жёлтой, а половина — элемент зелёной окраски. Точно так же половина пыльцевых зёрен будет содержать элемент жёлтой, а половина — элемент зелёной окраски. Случайные сочетания яйцеклеток и пыльцы дают, таким образом, следующие сочетания: 1 зелёный зелёный; 2 зелёный жёлтый; 1 жёлтый жёлтый.

Второй закон Менделя относится к случаям, когда включаются более одной пары признаков. Было обнаружено, что высокий и низкий рост рас гороха представляет собой контрастирующие признаки, расщепляющиеся таким же образом, как жёлтая и зелёная окраски. Если высокорослая раса с жёлтыми семенами скрещивается с низкорослой расой, имеющей зеленью семена, то расщепление каждой пары не зависит от расщепления другой пары, так что четверть яйцеклеток такого гибрида содержит элементы высокого роста и жёлтой окраски; четверть содержит элементы высокого роста и зелёной окраски; четверть — элементы низкого роста и жёлтой окраски и четверть — элементы низкого роста и зелёной окраски. Точно так же при формировании пыльцы образуются такие же четыре типа гамет. Случайные сочетания яйцеклеток и пыльцы дают 16 комбинаций.

Поскольку жёлтый доминирует над зелёным, а высокий над низким, в этом втором (F2) дочернем поколении будет девять высоких жёлтых; три низкорослых жёлтых; три высоких зелёных; одно низкорослое зелёное.

Следовательно, во время созревания зародышевых клеток, когда происходит расщепление членов каждой пары факторов гибрида, разделение каждой пары происходит независимо от другой.

В этом состоит второе открытие Менделя, которое может быть названо законом независимого распределения.

Мендель показал, что три пары признаков ведут себя таким же образом, то есть их гены распределяются независимо, и есть основания полагать, что этот закон применим во всех случаях, когда гены, обусловливающие две или более пары признаков, находятся в разных парах хромосом. Но, как будет показано ниже, если гены расположены в одной и той же паре хромосом, их распределение определяется третьим законом наследственности, а именно законом сцепления.

Элементы, которые, как предполагается, в некотором смысле представляют наследственные признаки, обычно именуются генами, а термин «генетика», или изучение поведения генов, в современных работах по наследованию заменил старый термин «наследственность» с его многочисленными сопутствующими значениями. О менделевских признаках часто говорят, как об единичных признаках, и иногда предполагают, что ген непосредственно образует каждый такой признак. Однако ясные данные указывают, что так называемый единичный признак представляет собой лишь одно на многочисленных проявлений действия гена, которое ген может производить всегда совместно со многими, а быть может, со всеми другими генами. Таким образом, зародышевая плазма рассматривается как общая сумма всех генов, совместное действие которых ответственно за каждый признак тела. Между тем как тело строится взаимодействием веществ, образуемых генами, при образовании зародышевых клеток, гены действуют как независимые единицы, которые собираются в пары, затем расщепляются. Гены, которые расположены в различных парах хромосом, распределяются независимо друг от друга, те же гены, которые расположены в одной хромосоме, оказываются сцепленными.

Современные работы по клетке безошибочно указали на тот механизм, при помощи которого осуществляется как расщепление генов, так и распределение хромосом. Каждая клетка тела или незрелая половая клетка содержит двойной набор хромосом (за исключением самцов некоторых групп, у которых отсутствует одна из половых хромосом). Один из членов каждой пары происходит от отца, другой — от матери. Во время процесса созревания материнские и отцовские хромосомы конъюгируют друг с другом, подобная с подобной. Затем, при так называемом редукционном делении, один из членов каждой пары отходит в одну дочернюю клетку, а другой член — в другую дочернюю клетку. Если хромосомы содержат менделевские гены, то материнские и отцовские гены будут расщепляться во время редукции хромосом при образовании гамет. Однако при редукционном делении не происходит отделения всех материнских хромосом от всех отцовских как группы в целом, но каждая пара хромосом расщепляется независимо от других пар, вследствие чего дочерние клетки могут получить любой возможный набор из отцовских и материнских хромосом, но всегда лишь один или другой член каждой пары. Это положение полностью удовлетворяет условиям второго закона Менделя о независимом распределении.

Но очевидно, если хромосомные нити, как предполагают, являются носителями генов и если, как обычно принимается в настоящее время, нить представляет собой структурный элемент, остающийся неизменным даже в покоящихся клетках, то гены должны наследоваться группами, соответственно числу хромосом. Одним словом, все гены в данной хромосоме должны быть сцепленными между собой. Самые последние данные показывают, что это так и есть, и что число групп сцепленных генов равно числу хромосом. Начиная с 1906 г. число известных случаев сцепления генов неизменно возрастало, и в настоящее время не может быть сомнения относительно того, что это явление представляет собой характерную черту менделевского наследования. На одном примере, у плодовой мушки Drosophila ampelophila, было показано, что 200 известных наследственных различий наследуются в четырёх группах, соответственно четырём парам хромосом. Таким образом, менделевский закон расщепления нашёл своё подтверждение в цитологическом механизме редукции в половых клетках, в то время как его закон независимого распределения подтверждается способом распределения хромосом. Впоследствии открытие значения явления сцепления привело все основные свойства наследственности в полное соответствие с хромосомным механизмом. Было найдено, однако, что индивидуальность хромосом, обусловливающая сцепление, не является абсолютной, так как было показано, что члены одной пары иногда обмениваются эквивалентными частями. Но этот обмен подчиняется определённой закономерности и если и усложняет результаты, то ни в коем случае не подрывает общего принципа. У некоторых видов обмен (кроссинговер) имеет место только у самок (Drosophila), у некоторых видов — только у самцов (шелкопряд), в то же время у других видов обмен происходит у обоих полов, как у некоторых обоеполых растений.

Наследование пола явилось одним из великих биологических открытий нашего столетия. Было показано, что фактор или факторы пола расположены в особых хромосомах, называемых половыми хромосомами. В некоторых больших группах (млекопитающие, большинство насекомых и т. д.) присутствие двух таких хромосом, называемых Х-хромосомами, образует самку; присутствие одной из них образует самца. Таким образом, самка имеет строение XX, а самец X. При редукционном делении у самки одна Х-хромосома элиминируется из яйца, поэтому каждое яйцо содержит лишь одну Х-хромосому. У самца имеется только одна Х-хромосома, которая при редукционном делении отходит только в одну из двух образованных клеток спермы, в результате чего возникают два класса сперматозоидов. Во время оплодотворения случайные встречи любого яйца с любым сперматозоидом дают два класса индивидуумов, имеющих две Х-хромосомы (самки) и одну Х-хромосому (самцы). Этот механизм обеспечивает численное равенство полов. В других группах (птицы, бабочки) отношение обратное, самец несёт две Х-хромосомы, а самка — одну; следовательно, все сперматозоиды содержат одну Х-хромосому, половина яиц несёт только одну Х-хромосому, а другая половина лишена её».

Таковы основные положения хромосомной теории наследственности в изложении Т. Моргана — основоположника этой теории.