6.2. ГИПЕРПАРАЗИТЫ ФИТОПАТОГЕННЫХ МИКРООРГАНИЗМОВ

We use cookies. Read the Privacy and Cookie Policy

В настоящее время известно около 40 видов специализированных гиперпаразитов фитопатогенных грибов. В практике защиты растений используют лишь несколько видов (не считая грибов рода Trichoderma, обладающих комплексным действием): Ampelo-myces quisqualis Ces., Coniothyrium minitans Campb. и др.

завершается достаточно быстро — первые признаки заражения заметны уже через 3...4 дня, на 5...6-й день формируются новые пикниды.

Ampetomyces quisqualis Ces. (= Cicinnobolus cesatii). Пикнидиаль-ный гриб, в естественных условиях паразитирует на мицелии, конидиях и клейстотециях мучнисто-росяных грибов — Erysiphe spp., Sphaerotheca spp., Podosphaera spp. Он заражает структуры хозяина путем прорастания конидий, образования ростковых трубок, которые разрушают клеточную оболочку и проникают в клетку. Пораженная клетка раздувается. Через 3...5 дней в ней закладываются пикниды гиперпаразита, которые постепенно темнеют, придавая мицелию мучнистой росы серый цвет (рис. 26). На поверхности мицелия также образуются пикниды, в которых формируются одноклеточные, бесцветные, одноядерные пикноспоры. С каплями дождя, ветром, насекомыми они разносятся и вызывают новые заражения. Для прорастания пикноспор необходима капельно-жидкая влага. Цикл развития гиперпаразита на хозяине

Coniothyrium minitans Campb.

Darluca filum Cast. Относится к сферопсидальным грибам и пара-

Относится к сферопсидальным грибам, но в отличие от Ampelomyces обычно встречается в почвенной среде, на растительных остатках, склероциях и микро-склероциях различных грибов (Sclerotinia, Claviceps, Botrytis, Sclerotium и др.). Этот гриб разрушает зимующие склероции, существенно снижая запас инфекции фитопатогенов в почве и на ее поверхности.

зитирует на ржавчинных грибах. На пустулах ржавчины гиперпаразит формирует белый мицелий с мелкими темными пикнидами. Поражает фитопатогена в эцио-, телио- и урединостадиях (преимущественно в последней). Для развития этого гриба благоприятна высокая относительная влажность воздуха.

Trichothecium roseum Link, (отдел Deuteromycota, пор. Hypho-mycdales). Часто встречается как сапротроф на растительных субстратах и на спороношениях многих грибов. Развитие грибов-фитопатогенов существенно ограничивается, и на их мицелии образуется ярко-розовый порошащий налет конидиального спороно-шения гиперпаразита. Способность к паразитированию у Т. roseum обусловлена выделением антигрибного антибиотика трихотецина. Антибиотик убивает гифы грибов, что позволяет гиперпаразиту питаться их содержимым.

6.3. ИСПОЛЬЗОВАНИЕ НЕПАТОГЕННЫХ И СЛАБОПАТОГЕННЫХ ВИДОВ И ШТАММОВ ВОЗБУДИТЕЛЕЙ ДЛЯ ЗАЩИТЫ РАСТЕНИЙ ОТ БОЛЕЗНЕЙ

6.3.1. ВАКЦИНАЦИЯ

Суть вакцинации заключается в том, что предварительная обработка растений авирулентными или слабовирулентными штаммами вируса вызывает повышение устойчивости к вирулентным штаммам. При такой инокуляции развивается латентная (бессимптомная) инфекция, иногда проявляются едва заметные симптомы заболевания.

Вакцинация растений принципиально не отличается от вакцинации человека и животных. В обоих случаях организм приобретает защитные свойства, т. е. иммунитет к инфекции. Однако механизмы иммунитета у животных и растений различны. У первых в крови вырабатываются защитные антитела, подавляющие возбудителя болезни, у вторых эффект вакцинации основан на интерференции вирусов: размножение первоначально введенного вируса служит препятствием для размножения патогенного штамма, проникшего в растение позже.

У вирусов интерференция наблюдается как между видами, так и между разными штаммами одного вируса. Ослабленные штаммы патогенов могут быть выделены из природных источников или получены путем экспериментального мутагенеза.

Механизм интерференции штаммов вирусов, лежащий в основе вакцинации, до сих пор до конца не выяснен, но возможность практически полной защиты вакцинированных растений, например томатов, от наиболее вредоносных заболеваний — деформирующей мозаики и некротических поражений листьев и плодов — в настоящее время не вызывает сомнений. Так, урожай с вакцинированных растений томата обычно на 20...30 % выше, чем с невак-цинированных, пораженных вирусной болезнью. Успеха удалось достичь при вакцинации не только томатов, но и картофеля. Для вакцинации необходимо использовать безвирусные клубни. В фазе двух настоящих листьев проводят вакцинацию слабовирулентным штаммом вируса X картофеля. На 4-й год после заражения слабовирулентным штаммом урожайность вакцинированного картофеля была на 40 % выше, чем у пораженного патогенным штаммом (Романова, Рейфман, 1978).

Этапы технологии вакцинации:

накопление «вакцинного» штамма вируса на восприимчивых растениях. Так, для накопления вакцинного штамма ВТМ используют турецкий табак, некоторые сорта томата. Растения инокулиру-ют вакцинным штаммом в возрасте 4...6 настоящих листьев и выращивают в течение 30...35 дней в условиях строгой изоляции от случайных источников инфекции;

получение вакцины. Листья растений-накопителей срезают и используют для приготовления препарата. Вакцинные препараты могут быть представлены тремя формами: сухая вакцина в виде засушенных листьев растений-накопителей; сырые листья растений-накопителей; очищенные препараты самого вируса. Эффективность этих форм приблизительно одинакова;

вакцинирование. Проводят однократное опрыскивание рассады томатов в фазе семядольных листьев или появления 1 -го настоящего листа. Вакцинируемые растения должны быть свободны от вирулентных штаммов ВТМ. Опрыскивание проводят с помощью различных распылителей (лучше под давлением

3- 105...5 • 105Па) с расстояния 10...15 см. Как правило, рабочие растворы вакцины из сухих листьев готовят из расчета 1 г листьев на 1 л воды; сок из сырых листьев разбавляют из расчета 2 мл сока на 1 л воды. Ампулы с очищенным препаратом разводят водой в зависимости от концентрации вируса в препарате согласно сопроводительной инструкции.

Большое значение для успешной вакцинации имеет не форма вакцинного препарата, а его концентрация, поэтому следует строго соблюдать рекомендации по применению препарата. Инокули-рованные растения необходимо после инфицирования в течение 2...3 сут держать в тени при температуре 18...25 °С.

Ограничения метода вакцинации связаны с опасностью нежелательных мутаций вакцинного штамма, сложностью эффективной инокуляции авирулентной формой патогена, возможностью некоторого снижения продуктивности растений в результате вакцинации, а также с рядом технологических трудностей.

6.3.2. ИСПОЛЬЗОВАНИЕ АВИРУЛЕНТНЫХ ШТАММОВ ГРИБОВ

В 70-е годы XX в. во Франции на некоторых полях было отмечено явление супрессивности почвы по отношению к возбудителю фузариозного увядания огурца. Другими словами, при наличии патогена в почве и условий, благоприятствующих заболеванию, развитие болезни практически отсутствовало. В опытных условиях было установлено, что это свойство почв утрачивалось при пропаривании и могло быть передано в кондуктивные (т. е. поддерживающие заболевание) почвы путем внесения в них супрессивной почвы примерно 10 % объема. Детальными исследованиями было доказано, что в этом случае супрессивность была обусловлена наличием в почве непатогенных штаммов F. oxysporum.

Биопрепараты Fusaclean и Biophox С, созданные на основе этих штаммов во Франции и Италии, защищают широкий круг растений от фузариозного увядания. Эти штаммы не проявляют антагонистическую активность in vitro, а индуцируют в растениях системную неспецифическую устойчивость. Работа с подобными штаммами ведется и в России, но созданные биопрепараты пока не зарегистрированы.

Агентами биологической защиты растений от болезней служат также продукты жизнедеятельности микроорганизмов, растений и животных, которые будут рассмотрены в следующих главах.