3.1. Миры до РНК и мир РНК
3.1. Миры до РНК и мир РНК
Многие исследователи полагают, что первым клеточным миром был мир РНК (Ferris, 1999; Hoenigsberg, 2003). Однако по причинам, рассмотренным выше, более правдоподобна версия, согласно которой в ранних клетках функционировали информационные автореплицирующиеся молекулы, в которых азотистые основания были подключены к просто организованным линкерам. Эти линкеры могли быть синтезированы путем пребиотических синтезов. Один из возможных предшественников РНК – уже упоминавшаяся выше пептид-нуклеиновая кислота (ПНК) – имеет структуру белка (звенья соединены пептидной связью), в котором боковыми группами являются азотистые основания (см. Раздел 2.5). Комплементарные нити ПНК способны образовать биспираль и, что особенно важно, комплементарные нити ПНК и РНК образуют гибридную биспираль. Экспериментально установлено, что ПНК может быть использована в качестве матрицы при комплементарном синтезе РНК (Bohler et al., 1995). Если ПНК как информационная автореплицирующаяся структура была непосредственным предшественником РНК, то благодаря столь высокой их совместимости переход к миру РНК мог произойти достаточно плавно. Этот переход был подготовлен приобретением клетками способности производить сахар d-рибозу, нуклеозиды, являющиеся продуктами присоединения одного из четырех азотистых оснований (аденина, гуанина, цитозина или урацила) к d-рибозе по углероду С1, и нуклеотиды – фосфорилированные макроэргические производные нуклеозидов (нуклеозидтрифосфаты). Именно нуклеотиды являются звеньями в цепи РНК. Сами нуклеотиды и ряд их низкомолекулярных производных могли быть использованы для запасания и переноса энергии, а также в качестве коферментов участвовать в ферментативном катализе, в том числе в комплементарной авторепликации РНК. На этом поприще РНК вытеснила предшествовавшие ей автореплицирующиеся макромолекулы. Первоначально мир РНК, в принципе, мало отличался от того, на смену которому он пришел. Предположительно, достаточно протяженные молекулы РНК были организованы подобно их предшественникам в форме последовательности петель, которые селективно связывали определенные аминокислоты и фиксировали их в положениях, благоприятствовавших образованию полимерной цепи (Рис. 1А). Таким образом, молекулы РНК одновременно служили матрицами, связывающими аминокислоты, и кодировали аминокислотную последовательность пептида (белка). Правдоподобность этой гипотезы подтверждается данными о реальном существовании структур РНК, специфически связывающих определенные аминокислоты. Такая структура была первоначально выявлена в интроне предшественника рибосомной РНК тетрахимены (Yarus, 1988). Соответствующий участок РНК стабильно изогнут в форме петли, сформированной как полость, которая специфически связывает аргинин. При этом оказалось, что РНК-петля предпочтительно связывает L-форму аргинина, т. е. осуществляет хиральную селекцию. Измерения константы диссоциации такого комплекса показали его высокую стабильность (Geiger et al., 1996). Впоследствии были обнаружены РНК петли, специфически связывающие фенилаланин и триптофан (Zinnen and Yarus, 1995). Эти наблюдения имеют принципиальное значение. В частности, они подтверждают возможность осуществления хиральной селекции аминокислот в петлях примитивных РНК-матриц. В период, когда синтез аминокислот был абиотическим и, следовательно, в клетку поступали оба оптических изомера, способность петель осуществлять первичную селекцию энантиомеров (оптических изомеров) обеспечивала оптическую однородность сформированного белка.
Не исключено, что для образования пептидной связи в клетке, т. е. в достаточно мягких условиях, аминокислоты были предварительно активированы. В модельных экспериментах образование пептидов было осуществлено при поликонденсации эфиров альфа-аминокислот (Fukuda et al., 1981). Современный механизм активирования аминокислот – подключение их к 3-OH концу тРНК с образованием эфирной связи – в несколько иной форме мог быть реализован уже на этапе примитивного кодирования пептидов на оганизованной в форме петель РНК-матрице (Felden and Giege, 1998).
В образовании химических связей между аминокислотами, удерживаемыми в петлях РНК-матрицы, могли участвовать как РНК-ферменты (рибозимы), так и ферменты белковой природы. Этот вопрос остается открытым. Однако в современном аппарате трансляции на рибосомах этап образования пептидной связи осуществляется с участием элемента рибосомной РНК в качестве рибозима (Joyce, 1989; Lhose and Szostak, 1996; Zhang and Cech, 1997).
Химические модификации азотистых оснований, а также ошибки при копировании (подключение к растущей цепи не комплементарного матрице азотистого основания) являлись причиной мутаций в РНК-матрицах, которые приводили к конформационным изменениям петель и обеспечивали их изменчивость как адапторов аминокислот. Соответственно эволюционировали контролируемые РНК-матрицами белки. Другой кардинальный путь модификации РНК-матриц, имеющий следствием появление новых белков, – рекомбинация матриц как путем прямого обмена материалом, так и по механизму перемены матрицы при репликации (Kogoma, 1996).
Необходимым элементом рассматриваемого механизма примитивного кодирования белков является плотная укладка РНК-матрицы, обеспечивающая ее компактность и тесное прилегание соседних петель друг к другу (как монеты в стопке). При должном ориентировании аминокислот, связанных с соседними петлями, их концевые амино и карбоксильная группы оказывались достаточно сближенными для образования химической связи. Можно предположить, что определенная конформация матричной молекулы РНК, обеспечивавшая координированную позицию петель и их тесную упаковку, была стабилизирована взаимодействием боковых участков соседних петель. Интересно отметить, что, хотя в современной системе трансляции основную стабилизирующую функцию выполняет рибосома, взаимодействие петлевых элементов двух молекул тРНК, которые доставили в рибосому очередные аминокислоты, сохраняет значение как дополнительный стабилизирующий фактор (Smith and Yarus, 1989).
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Затерянные миры вокруг нас
Затерянные миры вокруг нас Открытие затерянного мираВ 1937 году лётчик Джим Энджел, потерпев аварию, приземлился на одном из плоскогорий в глубине девственного леса Южной Америки. Ауян-Тепюи, Гора Дьявола, так называлось это гиблое плато. Он посадил самолёт над болотом, у
Затерянные миры
Затерянные миры В 1787 году Уильяма Смита пригласили оценить стоимость одного имения в Сомерсете, в Англии. Смита мало интересовали деньги. Он искал другие сокровища.Уильям Смит принялся изучать породы, выходившие на поверхность вдоль ручьев, на холмах и в угольных шахтах.
Глава 1. ЗАТЕРЯННЫЕ МИРЫ — ВОКРУГ НАС!
Глава 1. ЗАТЕРЯННЫЕ МИРЫ — ВОКРУГ НАС! Весной 1948 года в пустыне штата Нью-Мексико упал и разбился таинственный летательный аппарат. Из-под его обломков были извлечены обгоревшие останки нескольких маленьких человекообразных существ, чей рост не превышал 90 сантиметров.